THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

неисправности или отключения какойлибо из защит;
наличия дефектов системы регулирования, которые могут привести к превышению допустимой температуры газов или разгону турбины;
неисправности одного из масляных насосов или системы их автоматического включения;
отклонения от норм качества топлива или масла, а также при температуре или давлении топлива (масла) ниже или выше установленных пределов;
отклонения контрольных показателей теплового или механического состояния ГТУ от допустимого.
Не допускается пуск ГТУ после аварийного останова или сбоя при предыдущем пуске, если причины этих отказов не устранены.
Нельзя пускать и эксплуатировать ГТУ, если неисправны системы, обеспечивающие их жизнеспособность и надежность.
Предупреждение или предотвращение дальнейшего развития аварии при повреждениях отдельных узлов или недопустимых отклонениях параметров работы от нормы осуществляются системой автоматических защит. Важнейшими из них являются защиты от недопустимого повышения частоты вращения, температуры газов перед и за турбинами, от погасания факела и понижения давления смазочного масла. Кроме них обычно имеются защиты от осевого сдвига роторов, недопустимого понижения давления воздуха за компрессором (в случае, например, помпажа), недопустимого понижения давления топлива и др. Очень важным показателем механического состояния ГТУ является уровень вибрации.
Отклонения от нормальной работы фиксируются датчиками систем защиты. Сигналы датчиков по электрическим и (или) гидравлическим каналам передаются на исполнительные органы, срабатывание которых вызывает остановку ГТУ.
Если изменение параметров, по которым работают защиты, происходит медленно, предусматривается обычно предварительная уставка. При ее достижении подается предупредительный сигнал или автоматически осуществляются операции (уменьшение расхода топлива, включение резервного насоса и т.п.), препятствующие нежелательному изменению режима.
Отключение автоматических защит перед пуском или при работе ГТУ недопустимо. Тем более недопустимо отключение защит в тех случаях, когда по показаниям связанных с ними приборов персонал видит, что параметр, по которому производится защита ГТУ, приближается к своему предельно допустимому значению.
Повышение температуры в случаях, например, нарушения устойчивой работы компрессоров происходит столь быстро, что даже тренированный персонал не успевает своевременно остановить ГТУ вручную. Продолжительная (в течение минут) работа ГТУ в режиме помпажа также недопустима, даже если при этом не происходит полного срыва потока, а колебания давления относительно невелики. Возникающие при этом большие знакопеременные нагрузки на лопатках могут резко снижать сроки их службы и даже вызывать (сразу или через некоторое время) поломки. При этом ускоряется также износ упорных подшипников.
Превышение допустимой температуры газов или частоты вращения может привести к наиболее тяжелым повреждениям ГТУ. Опыт эксплуатации ГТУ свидетельствует о необходимости двойной защиты по этим параметрам, одна из которых осуществляется через систему регулирования.
Неисправности системы регулирования могут быть обнаружены непосредственно (заедания или неплотности клапанов, изменения по сравнению с нормальными характерных электрических величин или давления масла и т.д.), а также при работе ГТУ по: изменению пусковых характеристик (времени пуска, связи хода механизма управления с частотой вращения, уровню температуры газов на разных этапах); появлению неустойчивости; колебаниям нагрузки и температуры газов на постоянных режимах и после их изменения; резким колебаниям нагрузки и температуры газов при пусках, нагружении и разгружении.
Обеспечение исправности подшипников и их нормальной смазки является важнейшим условием надежной работы ГТУ. В тех установках, в которых масляные насосы системы смазки расположены отдельно и приводятся во вращение электродвигателями, надежность маслоснабжения подшипников обеспечивается дублированием насосов и наличием системы автоматического включения резервного насоса при отказе основного. Каждый из насосов работает поочередно (например, в течение месяца), а перевод маслоснабжения с одного насоса на другой производится с проверкой АВР. Неисправность одного из масляных насосов или системы АВР создает опасность аварии ГТУ с выплавлением подшипников.
Для обеспечения надежной и экономичной работы ГТУ и требуемых сроков службы их деталей предъявляются определенные требования к топливу. Отклонения от этих требований могут привести к снижению надежности пусков ГТУ (забиванию форсунок и фильтров), ускоренному износу и снижению надежности самого агрегата и его систем (топливоподачи и топливораспределения, форсунок, пламенных труб камер сгорания, лопаточного аппарата турбин и теплообменных аппаратов). Особенно опасны попадание в газотурбинное жидкое топливо остатков мазута при транспортировке и хранении и наличие газового конденсата в газообразном топливе, поступающем к ГТУ.
Повышение температуры жидкого топлива ограничивается по соображениям пожарной безопасности; в нормальных условиях она должна быть на несколько градусов ниже температуры вспышки. Недопустимое понижение температуры топлива и повышение вследствие этого его вязкости могут создать трудности при прокачке, фильтрации и распиливании. В результате возможны забивание филвтров и форсунок, ухудшение процесса горения, ускоренный износ или повреждение элементов камер сгорания и турбины.
Понижение давления топлива перед ГТУ вызывает нарушение регулировки топливораспределения (установленной и необходимой для нормальной работы агрегата связи расходов топлива с положениями органов регулирования и топливораспределения). Пуск агрегата в этих условиях может сопровождаться
недопустимыми отклонениями параметров и закончиться повреждениями ГТУ.
Системы распределения жидкого топлива работают обычно при больших перепадах давлений, поэтому попадание воздуха или продуктов сгорания в топливный тракт практически исключено. При работе на газообразном топливе перепады давлений в газовых насадках горелочных устройств сравнительно невелики. Понижение давления топливного газа может привести к срыву факела в камерах сгорания, попаданию в топливопроводы воздуха или продуктов сгорания и образованию в них взрывоопасных смесей. Чрезмерное повышение давления топлива может привести к нарушению плотности соединений на топливопроводах, течам топлива и создает опасности пожара и взрыва.
Нормы на турбинное масло приведены в главе 5.14 ПТЭ. Свежее и хорошо очищенное масло плохо смешивается с водой. При плохом качестве масла находящиеся в нем капельки воды не успевают отделиться и почти не оседают в маслобаке работающей турбины. Наличие в масле механических примесей (окалины, песка, золы, пыли и частиц металла от изнашиваемых деталей) вызывает ухудшение его смазывающих качеств. Ухудшение качества масла вызывается также окислением, которое происходит при воздействии на него кислорода воздуха или воды, и значительно ускоряется с повышением температуры масла, При температуре до 60°С скорость окисления находится еще в допустимых пределах, но при дальнейшем повышении температуры на каждые 10°С она возрастает в 2 раза. Вследствие окисления понижается температура вспышки и увеличиваются вязкость масла и содержание в нем смолистых веществ. При перегреве масла более легкие фракции улетучиваются. Окисление сопровождается потемнением и помутнением масла, оно приобретает специфический запах горелого нефтяного масла, которого нормальное турбинное масло не должно иметь. Окисленное масло обладает худшими смазывающими свойствами и способствует коррозии металлических поверхностей.
Наличие в масле механических примесей и воды приводит к ускоренному износу подшипников и шеек роторов и может привести к повышению вибрации валопровода и повреждению ГТУ. От температуры масла, поступающего к подшипникам, зависят его смазывающие свойства, а с учетом неизбежного нагрева в подшипниках – также и стабильность при длительной эксплуатации. При пониженной температуре масла изза высокой вязкости создаваемая в подшипниках масляная пленка может быть неустойчивой, В результате возможно возникновение повышенных вибраций и даже повреждение подшипников. Холодное масло перед пуском необходимо разогревать путем прокачки через систему смазки масляным насосом или с помощью специальных подогревателей. Масло, применяемое в системах смазки авиационных двигателей, работающих в составе энергетических ГТУ, при температурах ниже минус 40°С рекомендуется разжижать бензином.
Уровень масла в баках должен находиться в заданных пределах. Перед пуском необходимо убедиться в отсутствии заеданий в штоках поплавковых указателей уровня масла.
Тепловое и механическое состояния установки контролируются прежде всего при работе ГТУ, поэтому до пуска должны быть выяснены и устранены причины неполадок, если работа ГТУ сопровождалась хотя бы одним из перечисленных ниже признаков: повышенной вибрацией или внезапным повышением вибрации (даже если она после этого понизилась и находилась в пределах норм); повышенными температурами баббита или масла на сливе из подшипников; повышенными температурами или неравномерностью температур металла корпусных деталей и газа в турбинах; ненормальными относительными перемещениями роторов и корпусов; пропусками воздуха или газов высокого давления через разъемы ГТУ; течами масла или топлива; большими отклонениями мощности и экономичности ГТУ от нормативных; резким увеличением разности температур в воздухоохладителях; уменьшением запасов устойчивости компрессоров, если они наблюдаются при работе, а также уменьшением продолжительности выбега роторов, помпажем компрессоров, прослушиванием задеваний, металлических звуков или необычных шумов в проточной части при остановах. Точно так же нельзя пускать ГТУ при; наличии повреждений (трещин, обрывов корпусных деталей и трубопроводов, крепежа цилиндра, компенсаторов); неисправной изоляции; ненормальных перемещениях ГТУ при остывании или прослушивании задеваний при вращении роторов валоповоротным устройством или холодных прокрутках пусковым двигателем.

Изобретение относится к области энергетики, в частности к способам пуска и газоснабжения газоперекачивающих агрегатов, и может быть использовано при пуске любых газотурбинных установок. Способ пуска энергетической газотурбинной установки включает три этапа. На первом и втором этапах осуществляют раскрутку жестко связанных роторов турбокомпрессора внешним пусковым устройством, например детандером, жестко соединенным через автоматическую сцепную муфту с валом турбокомпрессора. Турбокомпрессор содержит компрессор, турбину и камеру сгорания, снабженную топливно-регулирующим клапаном, закрытым на первом этапе пуска и приоткрытом на втором. Последующее отсоединение от пускового устройства жестко связанных роторов компрессора и турбины при достижении ими расчетных оборотов и вывод их на рабочие обороты на третьем этапе за счет увеличения расхода и давления топливного газа. На выходе осевого компрессора устанавливают сбросный клапан, соединенный с входом камеры сгорания. Пуск газотурбинной установки на первом и втором этапах осуществляют при открытом сбросном клапане, а перед отсоединением пускового устройства закрывают сбросный клапан. Изобретение направлено на уменьшение дисбаланса мощности, вызванного провалом частоты вращения ротора турбины и скачком температуры перед ней, в момент отключения пускового устройства при пуске газотурбинной установки. 2 ил.

Изобретение относится к области энергетики, а точнее к способам пуска и газоснабжения газотурбинных установок (ГТУ) на газообразном топливе.

Пуск ГТУ является самым ответственным этапом в организации эксплуатации компрессорной станции. В процессе трогания роторов ГТУ начинают расти динамические нагрузки, возникают термические напряжения в узлах и деталях от прогрева ГТУ. Рост температур ведет к изменению линейных размеров лопаток, дисков, изменению зазоров в проточной части, тепловому расширению трубопроводов. При трогании ротора в первый момент не обеспечивается устойчивый гидравлический клин в смазочной системе. Идет процесс перехода роторов с рабочих колодок на установочные. Компрессор ГТУ близок к работе в зоне помпажа. Через нагнетатель осуществляется большой расход газа при низкой степени сжатия, что ведет к большим скоростям, особенно трубопроводов рециркуляции, что вызывает их вибрацию. В процессе запуска до выхода на режим «малого газа» валопроводы некоторых типов ГТУ проходят через обороты, совпадающие с частотой собственных колебаний, т.е. через резонансные обороты.

Пуск ГТУ осуществляется с помощью пусковых устройств. Для газоперекачивающих агрегатов (ГПА) применяются турбодетандеры, работающие в основном на перепаде давления природного газа, который предварительно очищается и редуцируется до необходимого давления. Турбодетандеры установлены на большинстве стационарных и некоторых авиационных ГПА. Иногда в качестве рабочего тела применяется сжатый воздух.

Кроме турбодетандера широкое применение нашли электростартеры, которые применяются на судовых ГПА. Ряд агрегатов оборудован системой гидравлического запуска. Мощность пусковых устройств составляет 0,3-3,0% мощности ГПА в зависимости от типа ГПА - авиационных или стационарных.

Рассмотрим типовой алгоритм автоматического запуска стационарного ГПА. При пуске ГПА можно выделить три этапа. На первом этапе раскрутка ротора осевого компрессора и турбины высокого давления происходит только благодаря работе пускового устройства.

На втором этапе раскрутка ротора турбокомпрессора производится совместно турбодетандером и турбиной. При достижении оборотов турбокомпрессора, достаточных для зажигания смеси 400-1000 об/мин, включается система зажигания и начинает осуществляться подача газа на дежурную горелку. О нормальном зажигании сигнализирует датчик - фотореле. Примерно через 1-2 мин после набора температуры примерно 150-200°С заканчивается первый этап прогрева, открывается регулирующий клапан на величину около 5% и начинается второй этап прогрева, который продолжается 10 мин. Затем происходит постепенное увеличение оборотов турбины высокого давления за счет открытия газорегулирующего клапана. При достижении оборотов примерно 50% от номинала турбина выходит на режим «самоходности». При выходе из зацепления муфты турбодетандера заканчивается второй этап раскрутки ротора. В этот момент для исключения провала частоты вращения ротора турбокомпрессора производится резкое открытие топливного регулирующего клапана на 2-3%.

На третьем этапе происходит дальнейший разгон ротора турбокомпрессора путем постепенного увеличения подачи газа в камеру сгорания. При этом закрываются антипомпажные клапаны осевого компрессора, турбоагрегат переходит работать с пусковых насосов на основные, приводимые во вращение уже от роторов агрегата. (А.Н.Козаченко. Эксплуатация компрессорных станций магистральных газопроводов. - М.: Изд-во «Нефть и газ», 1999, с.459).

Недостатки известного технического решения заключаются в скачке температур продуктов сгорания в турбине при завершении второго этапа пуска. Это приводит к существенным температурным напряжениям в узлах турбины, к задеваниям рабочих лопаток об элементы уплотнений радиальных зазоров и, как следствие, к снижению ресурса мощности и экономичности ГТУ.

Известны способы пуска ГТУ со свободной силовой турбиной путем раскрутки ротора турбокомпрессора ГТУ с помощью внешних пусковых двигателей (электродвигателей, паровых турбин, пневмостартеров, газотурбинных установок). (Стационарные газотурбинные установки: Справочник. / Под. ред. Л.В.Арсеньева и В.Г.Тырышкина. - Л.: Машиностроение, 1989, с.376-377).

Наиболее близким техническим решением к предлагаемому изобретению является способ пуска и газоснабжения энергетической установки по патенту РФ №2186224, который включает раскрутку жестко связанных роторов турбокомпрессора и дожимного компрессора топливного газа внешним пусковым двигателем (первый этап).

После достижения связанными роторами дожимного компрессора и турбокомпрессора пусковых оборотов открывают регулирующий клапан топливного газа, подают топливный газ в камеру сгорания и воспламеняют его запальником. Продукты сгорания проходят через газовую турбину ГТУ, раскручивая вышеупомянутые связанные роторы. По мере раскрутки связанных роторов при достижении так называемого режима «самоходности» производят отсоединение от пускового двигателя жестко связанных роторов турбокомпрессора и дожимного компрессора топливного газа при достижении ими расчетных оборотов (второй этап), а степень открытия регулирующего клапана топливного газа увеличивают, что повышает обороты роторов турбокомпрессора. Дальнейший вывод на рабочие обороты достигается за счет увеличения расхода и давления топливного газа (третий этап).

Этому техническому решению также присущи описанные выше недостатки, связанные со скачком температур при отсоединении пускового устройства.

Технической задачей предлагаемого изобретения является разработка способа пуска газотурбинной установки, позволяющего уменьшить дисбаланс мощности при отключении пускового устройства не за счет увеличения расхода топлива при пуске ГТУ. Этот дисбаланс мощности проявляется в провале частоты вращения вала турбины с одновременным значительным скачком температуры перед ней.

Технический результат достигается за счет того, что в известное устройство, содержащее внешнее пусковое устройство (турбодетандер), жестко соединенный через автоматическую сцепную муфту с валом турбокомпрессора, включающего компрессор, турбину и камеру сгорания, снабженную топливно-регулирующим клапаном, который на первом этапе пуска закрыт, а на втором - приоткрывается, с увеличением степени его открытия на третьем этапе пуска, внесены изменения, позволяющие изменить алгоритм пуска ГТУ, а именно;

На выходе осевого компрессора устанавливается сбросный клапан, соединенный с входом камеры сгорания:

Пуск ГТУ на первом и втором этапах осуществляется при открытом сбросном клапане;

При достижении режима «самоходности» перед отключением детандера сбросный клапан закрывают.

В результате появляющегося при этом дополнительного расхода воздуха через турбину уменьшается дисбаланс мощности, возникающий при отключении детандера, при этом увеличение расхода воздуха через камеру сгорания при подрыве топливного регулирующего клапана (ТРК) приводит к существенному снижению скачка температуры перед турбодвигателем.

На фиг.1 показана схема, реализующая предлагаемый способ пуска ГТУ, а на фиг.2 приведен график пуска ГТУ по прототипу и по предлагаемому изобретению.

Основными элементами схемы являются: 1 - внешний пусковой двигатель (детандер); 2 - расцепная муфта; 3 - осевой компрессор; 4 - регулирующий клапан топливного газа; 5 - приводная газовая турбина; 6 - сбросный клапан; 7 - камера сгорания; 8 - силовая газовая турбина; 9 - нагрузка; 10 - система автоматического управлений (САУ).

Предлагаемый способ пуска ГТУ осуществляется автоматически по командам САУ следующим образом. Внешним пусковым двигателем 1 раскручивают через расцепную муфту 2 жестко связанные валы осевого компрессора 3 и приводной газовой турбины 5. Регулирующий клапан топливного газа 4 при этом закрыт, а сбросный клапан 6 открыт.Воздух, проходя через камеру сгорания 7, поступает в приводную турбину, раскручивая вышеупомянутые связные валы за счет расширения газа. При достижении связанными роторами пусковых оборотов приоткрывают топливно-регулирующий клапан 4, а при достижении режима «самоходности» сбросной клапан закрывают, при этом расцепной муфтой 2 автоматически отсоединяется ротор пускового двигателя 1 от связанных роторов осевого компрессора 3 и приводной газовой турбины 5, а степень открытия топливно-регулирующего клапана увеличивают.

Рассмотренный способ пуска может быть применен для любой ГТУ, где используется пусковой турбодетандер.

На фиг.2 показаны пусковые характеристики газотурбинной установки ГТК-10 при алгоритме пуска по прототипу (известному) и по предлагаемому алгоритму.

Из анализа графиков на фиг.2 можно сделать вывод о том, что после отключения пускового турбодетандера (при частоте вращения 2600-2800 об/ мин - режим «самоходности») провал частоты вращения ротора турбокомпрессора уменьшился с 300 об/мин до 50 об/мин, т.е. в 6 раз, а скачок температуры продуктов сгорания при этом снизился на 50°С, т.е. в два раза.

Таким образом, предлагаемый алгоритм пуска ГТУ позволяет значительно уменьшить провалы частоты вращения вала турбокомпрессора и скачок температуры продуктов сгорания в турбине, что, в свою очередь, обеспечивает увеличение ресурса ГТУ и снижение расхода топлива.

Внедрение предлагаемого алгоритма пуска ГТУ было осуществлено в июле 2007 г. на газоперекачивающем агрегате (ГПА) ГТНР-16 и планируется к внедрению на ГПА ГТК-10.

Способ пуска энергетической газотурбинной установки, включающий три этапа, причем на первом и втором этапах осуществляют раскрутку жестко связанных роторов турбокомпрессора внешним пусковым устройством, например, детандером, жестко соединенным через автоматическую сцепную муфту с валом турбокомпрессора, включающего компрессор, турбину и камеру сгорания, снабженную топливно-регулирующим клапаном, закрытым на первом этапе пуска и приоткрытом на втором, отсоединение от пускового устройства жестко связанных роторов компрессора и турбины при достижении ими расчетных оборотов и вывод их на рабочие обороты на третьем этапе за счет увеличения расхода и давления топливного газа, отличающийся тем, что на выходе осевого компрессора устанавливают сбросный клапан, соединенный с входом камеры сгорания, причем пуск газотурбинной установки на первом и втором этапах осуществляют при открытом сбросном клапане, а перед отсоединением пускового устройства закрывают сбросный клапан.

Рис 3.1. (1 - момент стартера М ст; 2 - момент турбины М т; 3 –суммарный момент стартера и турбины М ст + М т; 4 - общий момент сопротивления ТК блока М ст + М т; I,II,III - этапы запуска).

На первом этапе происходит раскрутка ТК блока с помощью стартера до частоты вращения n 1 , соответствующей началу пос­тупления в камеру сгорания воздуха и осуществлению процесса вос­пламенения в ней.

На втором этапе (от n 1 до n 2) продолжается раскрутка ТК блока, но уже при совместной работе стартера и турбины. После достижения ТК частоты вращения n 2 , когда мощность турбины становится достаточной для его дальнейшей раскрутки, стартер отключается.

На последнем этапе (от n 2 до n xx) продолжается увеличение мощности турбины и выход ГТУ на режим холостого хода.

Рассмотрим процессы, происходящие в элементах ГТУ, в период ее пуска от n= 0, до n=n xx .

Потребная для работы компрессора мощность определяется его параметрами: КПД (η к), производительностью (G к) и величи­ной перепада тепла, характеризующего достигнутую степень повыше­ния давления при определенной температуре наружного воздуха. Ха­рактер изменения некоторых из них от частоты вращения в период пуска ГТУ представлен на рис.3.2.

Характер изменения параметров работы компрессора при запуске ГТУ

Рис.3.2. (1 - степень повышения давления π к; 2 - произ­водительность G к; 3 - потребляемая мощность N e k ; I - начало горения топлива; II - отключение стартера; III - частота вращения холостого хода).

Мощность, развиваемая турбиной ТК блока, также определяется параметрами: температурой газов на входе, их степенью расширения и расходом. Характер изменения некоторых из них в зависимости от частоты вращения при запуске корабельной ГТУ представлен на рис.3.3.

Характер изменения параметров работы турбины при запуске корабельной ГТУ

Рис.3.3. (1 - температура газов перед турбиной Т 3 ; 2 - степень расширения газа е ; 3 – мощность турбины N е T ; I - начало горения топлива; II - отключение стартера; III - частота вращения холостого хода).

Характер изменения параметров работы ГТУ-20 транспортного судна при ее запуске приведен на рис.3.4 .

Осциллограмма запуска ГТУ-20

Рис.3.4 (1 - число оборотов ТКВД n 1 ; 2 - температура газа перед ТВД T 1 ; 3 - число оборотов ТКНД n 2 ; 4 - давление топлива перед форсунками Р T ; _____ из холодного состояния; _ _ _ _ _ из прогретого состояния; I - включение зажигания и подача топлива; II - отклю­чение зажигания; III - страгивание ТКНД; IV – отключение стартера).

В общем случае процесс запуска ГТУ можно разбить на следующие этапы: страгивание, холодный разгон и подача топлива.



Для страгивания ТК блока к нему с помощью стартера подводится энергия, обеспечивающая преодоление сопротивления всей системы и ускорение ротора. При этом крутящий момент стартера должен быть не менее, чем в 1,5-2,0 раза больше момента страгивания, определяемого по формуле:

М стр =ξ*Р*r, (3.1)

где Р - вес ротора ТК; r - радиус подшипника, ξ = 0,3 - коэф­фициент трения покоя.

Величина указанного запаса обуславливается изменением момен­та страгивания в зависимости от времени стоянок, количества вскрытий, ремонтов и др.

На этапе холодного разгона необходимо принимать во внимание следующее обстоятельство: момент сопротивления ТК до подачи топ­лива в камеру сгорания для ГТД различ­ного класса может быть принят, равным моменту сопротивления компрессора, т.к. момент сопротивления турбины в это период пренеб­режимо мал. Для определения момента сопротивления ТК при В = 0, т.е. в области небольшого сжатия воздуха, может быть использована формула:

М/М 0 ≈ (n/n 0) 2 , (3.2)

где М 0 , n 0 - момент и частота вращения ТК на основном расчетном режиме.

При подаче топлива необходимо руководствоваться следующим. Продолжительность запуска ГТУ определяется временем подачи топлива и чем раньше оно будет подано, тем меньше время запуска. При экстренном запуске вводится ряд ограничений. Для обеспечения устойчивого горения в камере сгорания минимальное число оборотов компрессора должно составлять 10-20 % от значения полного хода. Удовлетвори­тельный распыл топлива должен быть обеспечен при его минимальном расходе через форсунки. Применительно к форсункам с механическим распылом эта величина обычно составляет 10-20 % от расхода на полном ходу, а с воздушным распылом она может быть снижена до 5-10 %. При выборе числа оборотов и количества топлива в момент подачи необходимо учитывать, что из-за неудовлетворительного рас­пыла, низкой скорости и температуры воздуха его значительная часть может не сгореть вообще или будет догорать в проточной части тур­бин. Поэтому КПД камеры сгорания в этот период падает до 60-70 % (вместо 97-98 % на полном ходу).



Приведенные цифры являются ориентировочными, т.к. рабочий процесс камер сгорания в пусковом режиме существенно зависит от типа камеры, форсунок и системы подачи топлива и в отдельных слу­чаях может выходить за указанные пределы. Исходя из условий надеж­ности запуска, число оборотов и расход топлива в момент его подачи должны быть не менее 20 % от их значений на режиме полного ПХ. В условиях нормальной эксплуатации указанные ограничения отсут­ствуют. Например, в ГТУ-20 топливо подается после выхода ТК на холодный установившийся режим.

Для осуществления пуска судовых ГТУ находят применение три вида стартера (электродвигатели постоянного и переменного тока, паровая турбина), каждому из которых присущи свои особен­ности. Так, электродвигатель постоянного тока обладает хорошей моментной характеристикой, допускает регулирование режима прос­тейшими способами (например, изменением напряжения в обмотке возбуждения), однако имеет большие габариты и для своей работы требует наличие выпрямителя.

Электродвигатель переменного тока обладает теоретически
наилучшей моментной характеристикой ( ст = f(n)). В то же время обычные малогабаритные двигатели (с короткозамкнутым ротором) допускают работу при пониженной скорости вращения только в течение нескольких секунд из-за многократной перегрузки по току, что для запуска ГТД неприемлемо, т.к. раскрутка ТК из-за его инер­ции обычно занимает несколько минут. Применение регулируемых двигателей (например, с фазным ротором) нерационально из-за увели­ченных габаритов и сложности системы регулирования. Поэтому для запуска ГТУ наиболее целесообразным является электродвигатель переменного тока в сочетании с гидротрансформатором. Такой комп­лекс представляет собой электрогидравлическое пусковое устройство. Наилучшей пусковой характеристикой обладает паровая турбина, т.к. она развивает большую мощность при предельно малых габаритах. Ее применение ограничивается необходимостью наличия пара, а это ставит запуск ГТД в зависимость от работы паровых котлов.

Мощность стартера составляет 2-4 % от мощности ГТД.

При выборе времени запуска определяющим является вес ГТД. Например, в легких ГТД, благодаря малой массе деталей, не возни­кает опасность недопустимых температурных напряжений, кораблений и т.п., связанных с его быстрым нагревом при запуске. В этом случае запуск определяется временем разгона ротора. В тяжелых ГТД, наоборот, вследствие массивности их деталей необходим постепенный и длительный прогрев. Время выхода из холодного неподвиж­ного состояния на режим холостого хода в большинстве случаев составляет 10 мин, а на режим полного хода - (20-30) мин; из горячего состояния - соответственно (4-6) мин и (6-8) мин. Экстренный запуск в 3-4 раза быстрее нормального запуска ГТД.

Учитывая, что надежность запуска ГТД в действие определяется моментом сопротивления раскручиваемого ТК, поэтому при его работе в таком режиме необходимо создать условия для уменьшения величины сопротивления и увеличения вращающего момента. В зависимости от типа ГТД для этих целей используют различные способы. В ГТД прос­тейшей схемы для улучшения пусковой характеристики уменьшают нагрузку на выходном валу, например, путем постановки на нулевой шаг лопасти ВРШ, отсоединения ГТД от гребного винта и т.п. В ГТД со свободной пропульсивной турбиной уменьшают сопротивление за турбиной компрессора, например, путем вытравливания газа на ее входе или раскрытием сечения поворотом сопловых аппаратов.

Для ГТД с двумя компрессорами имеются свои особенности. В начальный период запуска ТКНД неподвижен, т.к. момента, разви­ваемого его турбиной, не хватает для страгивания. В этот период помимо потери на выхлопе турбины раскручиваемого ТК (как и в схе­ме со свободной турбиной), добавляется потеря от прососа воздуха через неподвижный КНД, которая по опытным данным равна:

ΔР пр = кz(G/G 0) 2 , (3.3)

где z - число ступеней компрессора; G - количество просасывае­мого воздуха; G 0 - номинальная производительность компрессора; к≈1.

Из формулы (3.3) видно, что даже при малых расходах воздуха

компрессор представляет собой существенное сопротивление, сле­довательно, для улучшения пусковой характеристики ГТД следует либо с помощью специального пускового устройства заранее страги­вать ТКНД, либо уменьшать потери путем введения дополнительного воздушного тракта в обвод КНД.

Наиболее распространенной причиной повышения момента сопротивления при запуске является помпаж компрессора, приводящий к резкому снижению его КПД. В этом случае рациональным способом улучшения пусковой характеристики является вытравливание в атмос­феру небольшого количества воздуха из компрессора. Возникающие при этом потери будут значительно меньше по сравнению с выигры­шем от увеличения КПД компрессора в процессе его выхода из помпажа. Например, в ГТУ-20 компрессор при работе во время запуска в зоне помпажа имеет КПД около 65 %, а при выходе из помпажа - около 85 %, т.е. КПД увеличивается более чем на 20 %. Количест­во же воздуха, вытравливаемое для выхода из помпажа, составляет менее 10 %.

На запуск ГТД оказывает влияние его тепловое состояние. Нап­ример, запустить ГТД из прогретого состояния легче, чем из холод­ного. Это связано с уменьшением радиальных зазоров турбин и комп­рессоров, и соответствующим увеличением их КПД.

Как указывалось выше, при запуске ГТУ в действие в ее основных элементах происходят специфические процессы. Их сущность излага­ется ниже.

КАМЕРА СГОРАНИЯ. В этом элементе в конце первого этапа запуска при достижении ТК блоком частоты вращения n 1 (рис.3.1) происходит зажигание топлива. Для обеспечения ее надежного нача­ла и устойчивой последующей работы необходимы эффективные дейст­вия воспламеняющего устройства, хорошее смесеобразование и ор­ганизация горения.

В качестве воспламеняющих устройств наибольшее распростране­ние получили пусковые воспламенители , состоящие из пусковых фор­сунок и устройств, обеспечивающих необходимое формирование огне­вого факела. Их пусковые качества в основном обусловлены расходом топлива. В камерах сгорания, имеющих пусковые воспламенители, по­дается в 1,5 раза больше топлива, чем без них.

Устойчивость работы пускового воспламенителя определяется скоростью воздушного потока на входе в диффузор камеры сгорания и коэффициентом избытка воздуха в нем, а эффективность работы - температурой, глубиной проникновения факела внутрь жаровой трубы и местом расположения. Значения этих параметров взаимосвя­заны с составом смеси в воспламенителе и совершенством рабочего процесса.

После поджигания топливо-воздушной смеси происходит расп­ространение пламени по всему объему жаровой трубы камеры сгорания. Факторами, определяющими его характер, являются отношение количест­ва тепла, выделившегося в начальном сферическом объеме смеси, где происходит электрический разряд, к количеству отводимого тепла. Зависимость здесь такова: чем больше это отношение, тем лучше происходит распространение пламени.

В последующий период горения начинает возрастать давление в камере сгорания, в результате чего происходит переброс пламени через специальные патрубки в остальные холодные ее объемы и под­жигание в них топливо-воздушной смеси.

Надежность распространения пламени по всему объему камеры сгорания зависит от геометрических размеров и кинетической энер­гии выходящего факела, определяющих его воспламеняющую способ­ность, а также от характеристик смеси в циркуляционных зонах хо­лодных жаровых труб.

Геометрические размеры поджигающего факела при постоянном перепаде давлений между жаровыми трубами обусловлены только вели­чиной проходного сечения пламеперебрасывающего патрубка.

Устойчивое воспламенение смеси в камере сгорания возможно лишь при проникновении огневого факела в зону обратных токов цир­куляционной области. Если этого не произойдет и топливовоздушная смесь будет поджигаться на периферии жаровой трубы, стабильного горения смеси во всем объеме жаровой трубы не образуется, т.к. пламя постоянно будет сноситься потоком, движущимся с большой скоростью в зоне прямых токов.

Условия воспламенения смеси и пламеобразование во всем объе­ме жаровой трубы непосредственно зависят от состава горючей смеси и качества ее образования. Горение происходит при вполне опреде­ленных соотношениях паров топлива и воздуха.

Время подготовки смеси связано со скоростью испарения топ­лива. Оно определяет возможности сгорания смеси в пределах жаро­вой трубы. Интенсивность испарения топлива непосредственно зави­сит от степени его распыла (величины капелек) и усиливается с уменьшением их размеров.

При попадании огневого факела в зону обратных токов происхо­дит интенсивное испарение капель топлива и его воспламенение с распространением процесса воспламенения и на зону прямых токов. Устанавливается стабильный процесс горения, при котором горение смеси в зоне прямых токов постоянно поддерживается очагом пламени в зоне обратных токов. После этого отключаются пусковые воспла­менители.

Пусковые возможности камеры сгорания характеризуются ее пус­ковой характеристикой. Она определяет область воспламенения и ее границы, а также максимально допустимые значения скорости потока и коэффициента избытка воздуха.

КОМПРЕССОР. Для ускорения вывода ГТУ на режим холостого хода необходимо иметь температуру газа перед турбиной максимально до­пустимой. Однако препятствием этому является предел устойчивой работы компрессора.

Известно, что область такой работы осевого компрессора при низкой частоте вращения существенно сужена. Кроме того, при ин­тенсивном возрастании температуры газов перед турбиной заметно увеличивается сопротивление газовоздушного тракта ТК и, как след­ствие, снижается производительность компрессора. Его степень по­вышения давления в области малых оборотов возрастает медленно. В конечном итоге происходит уменьшение осевой скорости воздушно­го потока, увеличение угла атаки обтекания лопаток и возможен срыв потока. Компрессор будет работать неустойчиво (помпажировать) , в результате чего начнется колебание давления воздуха на выходе, снизится его производительность и возникнет вибрация. Все это отразится на работе турбины. При падении давления за компрессором нарушится установившаяся работа камеры сгорания и догорание газов будет происходить уже за турбиной. При сниженном давлении на входе и возросшем противодавлении на выходе существенно уменьшит­ся тепловой перепад, срабатываемый турбиной и, как следствие, про­изойдет снижение интенсивности роста частоты вращения ТК блока. В таких условиях возможны "зависание" частоты вращения и срыв запуска ГТУ. Во избежание этого, величина критерия устойчивости компрессора против помпажа должна быть К у >1,1. При значениях К у > 1,1 (очень малых запасах устойчивости) требуется корректи­ровка подачи топлива на запуске вручную.

Характеристика компрессора при работе его на пусковых режи­мах приведена на рис.3.5 .

Видно, что при запуске рабочая линия компрессора заметно смещается в сторону к границе устойчивости по сравнению с рабо­той на установившихся режимах.

На некоторых ГТУ допускается выход рабочей линии компрессора за границу устойчивой работы на первом этапе запуска, т.к. в этот период топливо в камеру сгорания не подается, а поэтому серьезной опасности ГТУ не подвергается. В противном случае (по каким-то причинам произойдет подача топлива в камеру сгорания) ГТУ попадет в помпаж и возможен пожог лопаток турбины.

Несмотря на многообразие систем запуска газотурбинных двигателей, они все имеют стартер, обеспечивающий предварительную прокрутку ротора двигателя, источник энергии, необходимый для работы стартера, устройства, обеспечивающие подачу топлива и зажигание горючей смеси в камерах сгорания, агрегаты, обеспечивающие автоматизацию процесса запуска. Наименование систем запуска определяется типом стартера и источником питания.

К системам запуска предъявляются следующие основные требования, которые направлены на обеспечение:

надежного и устойчивого запуска двигателя на земле в диапазоне температур окружающего воздуха от - 60 до +60 °С. Допускается предварительный подогрев ТРД при температуре ниже - 40 °С, аТВД - ниже - 25 °С;

надежного запуска двигателя в полете во всем диапазоне скоростей и высот полета;

продолжительности запуска ГТД, не превышающей 120 с, а для поршневых 3...5 с;

автоматизации процесса запуска, т. е, автоматического включения и выключения всех устройств и агрегатов в процессе запуска двигателя;

автономности системы запуска, минимальных затрат энергии на один запуск;

возможности многократного запуска;

простоты конструкции, минимальных габаритных размеров и массы, удобства, надежности и безопасности в эксплуатации.

В настоящее время наибольшее применение находят системы запуска, в которых для предварительной прокрутки ротора двигателя используются электрические и воздушные стартеры. Соответственно и системы получили название - электрические и воздушные. Источники энергии стартеров могут быть бортовыми, аэродромными и комбинированными.

Автоматизация процесса запуска двигателей может осуществляться по временной программе независимо от внешних условий, по частоте вращения ротора двигателя и по комбинированной программе, где одни операции выполняются по времени, а другие по частоте вращения.

При выборе типа системы запуска для того или иного двигателя учитываются многие факторы, наиболее существенными из которых являются: мощность стартера, масса, габаритные размеры и надежность системы запуска.

Электрическими системами запуска двигателей называются такие системы, в которых в качестве стартеров используются электродвигатели. Для запуска ГТД применяются электростартеры прямого действия, у которых осуществляется непосредственная связь через механическую передачу с ротором двигателя. Электростартеры рассчитаны на кратковременную работу. В последнее время получили широкое применение стартер-генераторы, которые при запуске двигателя выполняют функцию стартеров, а после запуска - функцию генераторов.

Электрические системы запуска достаточно надежны в работе, просты в управлении, позволяют легко автоматизировать процесс запуска, а также просты и удобны в обслуживании. Они используются для запуска двигателей, имеющих сравнительно небольшие моменты инерции, или когда время вывода их на режим малого газа сравнительно велико. Для запуска двигателей с большими моментами, инерции или при сокращенном времени выхода на режим малого газа требуется увеличение мощности стартеров. Для электрических систем характерно значительное увеличение их массы и габаритных размеров при увеличении мощности стартера, что вызывается как увеличением массы самих стартеров, так и источников питания. В этих условиях массовые характеристики электрических систем могут оказаться значительно хуже других систем запуска.

Под системами, обслуживающими работу ГТУ, подразумевается комплекс технических средств, при помощи которых могут быть осуществлены все эксплуатационные режимы работы установки.

Работу судовой ГТУ обеспечивают следующие системы:

    топливная система;

    система пуска;

    система смазки;

    система суфлирования;

    система реверса;

    система охлаждения конструктивных узлов ГТУ;

    система регулирования, управления и защиты − РУЗ ГТД;

    воздухоприемные и газовыхлопные устройства.

Топливная система

Топливная система ГТД предназначена для подачи топлива к форсункам камер сгорания в количестве, обеспечивающем заданную мощность двигателя, а также для предварительной подготовки топлива в ГТУ, работающих на тяжелых сортах топлива.

В судовых ГТУ могут использоваться те же марки топлива, что и в дизельных энергетических установках:

    дизельные топлива по ГОСТ 305-82 марокЛ ­− летнее,З − зимнее,А − арктическое;

    дизельные топлива по ГОСТ 4749-73 марокДС иДЛ ;

    моторные топлива по ГОСТ 1667-68 марокДТ (обычной и высшей категории качества) иДМ ;

    газотурбинные топлива по ГОСТ 10433-75 марокТГ – обычной категории качества иТГВК – высшей категории качества;

    флотские мазуты по ГОСТ 10585-99 марокФ-5 иФ-12 .

В топливных системах легких прямоточных двигателей применяют исключительно легкие дистиллятные сорта топлив. Применение же дешевых низкосортных топлив заставляет учитывать последствия, связанные с их повышенной зольностью и содержанием примесей, которые могут вызывать коррозионные процессы в проточных частях ГТ, заносы деталей проточной части золой и смолистыми веществами. Поэтому ГТД, работающие на тяжелых сортах топлив, имеют в составе топливной системы отдельную систему предварительной подготовки топлива и ввода присадок. Работа же ГТУ на сравнительно дорогих дистиллятных топливах не сопряжена с какими либо трудностями и не требует специальных мероприятий, обеспечивающих их сжигание в КС.

Топливные системы судовых ГТУ должны обеспечивать следующие условия для работы двигателя:

    необходимое давление топлива для качественного его распыла в форсунках камер сгорания;

    вязкость топлива перед форсунками не более 1,2 – 1,5 о Е (градусов вязкости) для получения надлежащего качества распыла;

    отсутствие содержания воды, снижающей теплотворную способность топлива, вызывающей коррозию топливной аппаратуры и приводящей к срыву факела пламени в КС;

    отсутствие механических примесей, засоряющих и изнашивающих форсунки, топливные насосы и фильтры;

    прием топлива в цистерны основного запаса с береговых и плавучих нефтебаз.

Топливные системы ГТУ, работающих на тяжелых сортах топлива, дополнительно к перечисленному должны обеспечивать:

    возможность проведения на судне предварительной обработки топлива;

    предварительный подогрев тяжелого топлива до температуры 120 ÷ 130 о С для снижения его вязкости;

    тщательную многоступенчатую фильтрацию топлива и обеспечение надежного приема топлива главным топливным насосом;

    возможность использования пускового легкого топлива для облегчения пуска ГТУ;

    промывку форсунок легким топливом при плановых остановках или продувку их сжатым воздухом при экстренных остановках для предотвращения застывания тяжелого топлива в форсунках и обеспечения надежных последующих пусков ГТУ.

Рис. 67. Схема и состав топливной системы ГТУ, работающей на тяжелом топливе.

основная топливная система пресная промывочная вода

пусковая топливная система система подготовки топлива

БД – бак с деэмульгатором (полигликолевый эфир фенола ОП-7); СЦ – смесительная цистерна; ДН – дозирующий насос; НПВ – насос промывочной воды; ЗТЦ – запасная топливная цистерна; ТПН – топливоперекачивающий насос; ПТ – подогреватель топлива; П – подогреватель моющего раствора; – бак с раствором сернокислого магния; СМ – смеситель; ОБ – отстойные баки; Сеп – сепараторы; ЩФ – щелевые фильтры; СФ – сетчатые фильтры; РЦТТ – расходная цистерна тяжелого топлива; РЦЛТ – расходная цистерна легкого топлива; НЛТ – насос легкого топлива;

В – баллон со сжатым воздухом; ОФ – основные форсунки; ПФ – пусковая форсунка; БН – бустерный (подкачивающий) насос; ГТН – главный топливный насос; БК – байпасный клапан; К1 , К2 – краны; СК – стоп-кран; АРТ – автоматический распределитель топлива; ДК – дроссельный кран.

Схема топливной системы ГТУ, работающей на тяжелом топливе, показана на рис. 67. ГТД, работающие на тяжелых сортах топлива, имеют две параллельные топливные системы:пусковую иосновную .

Из бака БД деэмульгатор направляется в смесительную цистерну СЦ , куда подается пресная вода. Из смесительной цистерны вода, смешанная с деэмульгатором (50 % раствор ОП-7), дозирующим насосом ДН 1 направляется на всасывание насоса промывочной воды НПВ в количестве 0,4 ÷ 0,5 % от расхода топлива. После подогрева промывочной воды с деэмульгатором в подогревателе П вода в количестве 5 ÷ 8 % от расхода топлива подается в смесительное устройство СМ , где перемешивается с топливом, подаваемым топливоперекачивающим насосом ТПН из цистерны запасного топлива через подогреватель топлива. Часть воды направляется в бак, куда загружают кристаллический сернокислый магний MgSO 4 , растворяемый до 25 % концентрации. Добавка раствора MgSO 4 в топливо повышает температуру плавления пятиокиси ванадия V 2 O 5 примерно до 1100 о С (V 2 O 5 содержится в тяжелых фракциях нефти и вызывает в расплавленном состоянии сильнейшую коррозию, называемую высокотемпературной ванадиевой коррозией). Полученный в баке раствор сернокислого магния подается дозирующим насосом ДН2 в расходную цистерну тяжелого топлива, либо в топливную магистраль перед форсунками. Перемешанное с промывочной водой в смесителе СМ топливо направляется в отстойные баки ОБ , где происходит отделение очищенного топлива от воды с растворенными в ней солями. Из баков топливо поступает в сепараторы, где окончательно отделяется от оставшейся воды.

Отсепарированное топливо поступает в расходную цистерну РЦТТ , емкость которой определяется запасом топлива примерно на 8 часов работы ГТУ (две вахты). Из РЦТТ промытое и содержащее присадки топливо через щелевые фильтры забирается бустерным насосом БН и через сетчатые фильтры направляется на всасывание к главному топливному насосу ГТН . ГТН направляет топливо через следующую ступень фильтров в подогреватель топлива, в котором температура подогрева изменяется регулятором, управляющим байпасным клапаном БК . Расход топлива на форсунки регулируется дроссельным краном ДК , управляемым с пульта управления и сливающим часть топлива обратно в РЦТТ . Подогретое топливо после фильтрации направляется в автоматический распределитель топлива АРТ с автоматом запуска, управляющий подачей топлива к основным форсункам двигателя ОФ .

При плановых остановках топливная система промывается легким дистиллятным топливом, подаваемым насосом легкого топлива из цистерны легкого топлива через сетчатые фильтры. При промывке с помощью крана К2 отсекается подача основного топлива, которое полностью направляется на слив в РЦТТ через дроссельный кран ДК . В топливную магистраль за краном К2 поступает легкое топливо, на котором ГТУ, предварительно переведенная в режим холостого хода, работает 3–5 мин., после чего подача топлива полностью прекращается, и топливная магистраль от крана К2 до форсунок остается заполненной легким топливом. При этом обеспечивается легкий и надежный последующий пуск ГТУ.

При экстренных остановках подача топлива к форсункам отсекается стоп-краном СК , к которому подведены импульсы от системы РУЗ ГТД . При этом топливо из напорной магистрали перепускается на слив в РЦТТ , а участок топливной магистрали после стоп-крана СК , включая АРТ и форсунки ОФ , продувается сжатым воздухом из баллона В .

Топливная система легкого топлива используется также при пуске, когда топливо из РЦЛТ топливным насосом через кран К1 подается к пусковой форсунке ПФ . В период, предшествующий пуску, топливная система прогревается при работающих насосах БН и ГТН и подогревателе топлива. При этом дроссельный кран ДК полностью закрыт и все топливо при помощи стоп-крана направляется на сброс в цистерну РЦТТ .

Для ГТД, использующих для работы только легкое дистиллятное топливо, система значительно упрощается. В этом случае полностью исключается часть топливной системы, предназначенная для промывки и ввода присадок, а также часть системы легкого топлива. Для таких двигателей топливная система содержит: расходную цистерну ,фильтры перед и за ГТН,стоп-кран ,АРТ ифорсунки . Топливоперекачивающий насос в этом случае подает топливо из запасной цистерны непосредственно в расходную цистерну.

Система пуска

Система пуска ГТУ предназначена для ввода установки в действие. Эта операция требует наличия внешнего источника энергии (пускового двигателя), который представляет собой основной элемент системы пуска.

В общем случае система пуска ГТУ содержит следующие компоненты:

    пусковой двигатель ;

    запальное устройство ;

    обгонную муфту .

Пусковой двигатель предназначен для первоначальной раскрутки турбокомпрессорного агрегата и в момент пуска присоединен к ротору турбокомпрессора. Вращая ротор турбокомпрессора, пусковой двигатель заменяет собой еще неработающую газовую турбину, обеспечивая подачу воздуха в камеры сгорания.

В качестве пусковых двигателей в ГТД могут использоваться:

    электродвигатели постоянного и переменного тока (электростартеры );

    турбостартеры , представляющие собой автономные ГТД малой мощности со свободной силовой турбиной. В этом случае пуск ГТД производится в два этапа: на первом пускается турбостартер своим пусковым электродвигателем (обычно постоянного тока с запиткой от аккумуляторной батареи), а на втором – турбокомпрессор главной установки. Такая схема пуска обычно используется для турбореактивных и турбовинтовых авиационных двигателей;

    паровые турбины (турбодетандеры ), обычно применяемые на судах, в составе вспомогательной установки которых имеются вспомогательные паровые котлы;

    пневмотурбины , работающие от системы пускового сжатого воздуха.

Запальное устройство предназначено для обеспечения зажигания факела в камерах сгорания и представляет собой пусковую топливную форсунку и электрическую свечу зажигания.

Высоковольтная свеча дает постоянный искровой разряд весь период работы пускового блока и воспламеняет топливо пусковой форсунки. Факел пламени пусковой форсунки направлен таким образом, чтобы обеспечить устойчивое зажигание топлива основной форсунки. После зажигания топлива основной форсунки через пламяперебрасывающие патрубки происходит зажигание топлива в форсунках остальных камер сгорания. Пусковое запальное устройство, выполнив свою функцию, автоматически отключается вместе с пусковой топливной системой.

Обгонная муфта используется для присоединения пускового двигателя к турбокомпрессору, обеспечения его раскрутки и автоматического отключения пускового двигателя от вала ГТД при наборе турбокомпрессором заданной частоты вращения.

Процесс пуска ГТД состоит из следующих периодов (рис. 68):

1 период – холодный разгон. Пусковой двигатель с помощью обгонной муфты присоединяется к ротору того турбокомпрессорного агрегата, в составе которого имеется пусковая камера сгорания с запальным устройством. Вращаемый пусковым двигателем компрессор начинает нагнетать воздух в газовоздушный тракт установки, вследствие чего создается ток воздуха от ком­прессора через камеры сгорания, проточные части турбин, теплообменные аппа­раты в выпускной газоотвод, и выброс его в атмосферу. После того как расход воздуха, подаваемый компрессором в КС, окажется достаточным для окисления мини­мального количества топлива, в камеру сгорания через пусковую форсунку начинают подавать топливо от пусковой топливной системы, которое воспламеняется запальным устройством.

2 период – режим сопровождения . После воспламенения топлива в камерах сгорания в газовую турбину начинает поступать горячий воздух, смешанный с продуктами сгорания, что приводит к появлению на валу турбины увеличенного вращающего момента, суммирующегося с вращающим моментом пускового двигателя. С этого момента разгон ротора турбокомпрессора становится более интенсивным за счет совместной работы пускового двигателя и газовой турбины, увеличивая расход воздуха в КС. При этом одновременном увеличивается расход топлива, подаваемого в камеры сгорания. При дальнейшем увеличении частоты вращения турбокомпрессора турбина принимает на себя всю нагрузку компрессора, обусловленную сжатием воздуха и потерями энергии на трение в подшипниках. При частоте вращения компрессора, превышающей частоту вращения пускового двигателя, обгонная муфта отключает пусковой двигатель от ротора турбокомпрессора.

3 период – горячий разгон . После отключения пускового двигателя дальнейший разгон ротора тур­бокомпрессора осуществляется за счет разности вращающих моментов, созда­ваемых газом на валу турбины и воздухом на валу компрессора (с учетом тре­ния в подшипниках). Разгон продолжается до тех пор, пока упомянутая раз­ность вращающих моментов не станет равной нулю, что соответствует дости­жению равновесного установившегося режима работы турбокомпрессора. Равновесие может наступить при любом расходе подаваемого в камеру горе­ния топлива, превышающем некоторое минимальное значение, ниже которого не может быть получен установившийся режим работы турбокомпрессора.

Рис. 68. Периоды пуска ГТД.

ПД – пусковой двигатель; М – обгонная муфта; Тл – подача топлива; М ПД – крутящий момент пускового двигателя; М ГТ – крутящий момент газовой турбины.

Обычно на систему пуска судовой ГТУ возлагается задача выведения установки на такой режим, при котором турбокомпрессор работает при некоторой установившейся частоте вращения, а мощность, развиваемая установ­кой на валу пропульсивной турбины, близка к нулю. Такой режим называетсярежимом холостого хода – ХХ .

Управление пуском турбокомпрессора обычно сводится к следующим операциям:

    Включению обгонной муфты;

    Включению пускового двигателя;

    Включению запального устройства;

    Подаче топлива в камеру сгорания.

Обычно включение пускового двигателя и запального устройства осуществляется одновременно. Момент начала подачи топлива в камеру сгорания определяется давлением топлива, необходимым для получения надлежащего распыливания, и расходом воздуха, подаваемого компрессором, при котором температура газа перед газовой турбиной не превысит предельного значения, и будет исключена возможность возникновения явления помпажа осевого компрессора.

Система смазки

Система смазки ГТД предназначена для подачи масла на подшипники турбин и компрессоров, зубчатого зацепления и отвода тепла от них.

К маслам, применяемым в судовых ГТУ предъявляются следующие требования:

    высокая устойчивость к образованию осадков и лаковых отложений;

    высокая температура вспышки (рабочая температура подшипников компрессоров и газовых турбин может достигать 150 ÷ 250 о С );

    низкая испаряемость (температура кипения должна быть на ~ 50 о С выше его максимальной рабочей температуры);

    масла ГТУ должны служить защитной средой при бездействии установки и не вызывать образования коррозии в масляной системе.

Для смазки и охлаждения подшипников качения ГТД применяют маловязкое термостабильное масло для судовых газовых турбин – ГОСТ 10289-79; а для смазки зубчатых передач –масло турбинное 46 итурбинное с присадкой – Тп-46 ГОСТ 9972-74.

В ГТУ, где система автоматического регулирования, управления и защиты (РУЗ ГТД) имеет гидравлические приводы исполнительных механизмов, в качестве рабочей среды используют маловязкое масло из системы смазки ГТД.

Используемые схемы систем смазки судовых и корабельных ГТД могут быть разделены на две группы:

    напорные системы , характеризующиеся струйной подачей масла к подшипникам под давлением через специальные каналы во вкладышах или через масляные форсунки. Эти системы применяются в ГТД с подшипниками качения и скольжения.

    системы смазки масляным туманом .

В свою очередь напорные системы можно разделить:

    на системы форсированной смазки , в которых смазка подается ко всем узлам от масляного насоса (масляный насос часто навешен на ГТД и получает вращение от ротора компрессора через коробку приводов);

    системы гравитационной смазки , в которых смазка подается из цистерны, расположенной на уровне 10 ÷ 12м над ГТД для обеспечения необходимого напора масла. Масляный насос в этом случае только возвращает масло из сточно-расходной цистерны в гравитационную цистерну. Эта схема приемлема только для судов транспортного флота, где размеры машинных отделений позволяют разместить элементы гравитационной системы смазки. Гравитационные системы смазки также используются в качестверезервных систем смазки . Объем гравитационных цистерн выбирают из учета 10 ÷ 15 минутной работы ГТД, в течение которых могут быть устранены неисправности в работе основной системы смазки, либо дана команда на отключение подачи топлива в камеры сгорания для экстренной остановки ГТД на выбеге.

Система смазки судовой ГТУ состоит из следующих основных элементов (рис. 69): основного ирезервного масляных насосов ;фильтров ;подогревателей иохладителей масла ;масляных цистерн (расходной, запасной, грязного масла, гравитационной для гравитационных систем смазки);масляных сепараторов ;маслоперекачивающего насоса ;КИП и трубопроводов.

Рис. 69. Схема масляной системы ГТУ (форсированная и гравитационная системы).

трубопроводы форсированной смазки;

трубопроводы, относящиеся к гравитационной системе;

сливные трубопроводы.

РМЦ – расходная масляная цистерна; Гр .Ц – гравитационная цистерна;

ЦЗМ – цистерна запасного масла; ЦГМ – цистерна отработавшего (грязного) масла;

ОМН – основной масляный насос; РМН – резервный масляный насос;

МФ – магнитный фильтр; ГМФ – главные масляные фильтры; МО – маслоохладитель; ЗФ – защитные фильтры; МПН – маслоперекачивающий насос; МСеп . – сепаратор.

В системах смазки ГТД обязательно предусматривается защита от падения давления масла. При падении давления масла должен автоматически включиться в работу резервный масляный насос, либо система должна перейти на смазку по гравитационной линии. Если давление в системе смазки продолжает падать (что может свидетельствовать о разрыве напорного масляного трубопровода), из системы выдается сигнал на стоп-кран топливной системы, отключающий подачу топлива на форсунки двигателя.

Маслоперекачивающий насос предназначен для перекачки отработавшего масла из РМЦ в цистерну отработавшего масла, для пополнения убыли масла в системе, либо полной замены масла путем его перекачки из ЦЗМ в РМЦ.

Сепаратор масла используется для удаления из масла воды и механических примесей. В холодное время года возможна прокачка масла сепаратором черезмаслоподогреватель (на схеме не показан). Обогрев масла в РМЦ может производиться и от системы змеевиков, по которым пропускается пар от вспомогательного парового котла.

Система суфлирования

Система суфлирования предназначена для отбора масловоздушной смеси из масляных полостей подшипников ГТД, отделения масла от воздуха и последующего возвращения масла в систему смазки ГТД.

В состав системы суфлирования входят:

    трубопроводы , соединяющие масляные полости подшипников с осадительной емкостью;

    осадительная емкость (бак), где происходит выделение капель масла и осаждение их на стенках; Часто роль осадительного бака играет сточно-расходная цистерна масляной системы;

    маслоотделительные сепараторы (центрифуги ), завершающие процесс разделения масловоздушной смеси на составные части; они приводятся в действие, от коробки приводов, соединенной с валом турбокомпрессора ГТД посредством редукторной передачи.

Система реверса

Система реверса ГТД предназначена для изменения направления вращения вала движителя на противоположное. На судах и кораблях с ГТУ могут применяться следующие средства для обеспечения реверса:

    специальные двигатели заднего хода . Такой способ реверса часто применяется на судах на подводных крыльях – СПК. В этом случае двигатели заднего хода имеют свои независимые движители, находящиеся в неводоизмещающем положении СПК над поверхностью воды, и погружающиеся в воду при движении судна в водоизмещающем положении;

    электрическая передача . Этот способ реверса применим на тех судах, где используется электродвижение (ГТД работает на электрогенератор, передающий электроэнергию на гребной электродвигатель);

    реверсивная передача . В этом случае ГТД передает вращение на передачу, конструкция которой позволяет менять направление вращения выходного вала, соединенного с движителем, без изменения направления вращения вала самого ГТД. Наиболее часто используются гидрореверсивные передачи, включающие в себя гидромуфту и гидротрансформатор, и механические передачи (реверсивные редукторы);

    реверсивные движители (как правило, винты регулируемого шага). Реверс осуществляется за счет перекладки поворотных лопастей винта из положения переднего хода в положение заднего хода. В этом случае смены направления вращения вала движителя на противоположное не происходит;

    реверсивные ГТД , способные изменять направление вращения вала пропульсивной газовой турбины.

Использование реверсивных судовых ГТД связано с применением в их конструкции отдельных турбин (ступеней)заднего хода ТЗХ , или специальныхреверсивных центростремительных турбин .

Реверсивные осевые турбины выполняются в двух возможных вариантах (рис. 70):

    в виде отдельной турбины заднего хода , находящейся на отдельном диске, жестко связанном с ротором пропульсивной турбины переднего хода (рис. 70.а );

    в виде совмещенного расположения на одном диске ступеней переднего и заднего хода (использование двухъярусных лопаток – рис. 70.б ).

Важным элементом системы реверса в реверсивных осевых турбинах является газораспределительный орган , с помощью которого газ после турбины компрессора может быть направлен либо в проточную часть турбины переднего хода, либо в проточную часть турбины заднего хода.

При реверсе сначала происходит торможение ротора пропульсивной турбины газом, подаваемым в проточную часть турбины обратного хода, которая вращается кромками рабочих лопаток вперед. Этот режим работы двигателя называется «режимом контргаза». После полной остановки ротора пропульсивной турбины газораспределительный орган направляет весь поток газа на турбину обратного хода.

Рис. 70. Схемы взаимного расположения проточных частей ТПХ и ТЗХ

а – с ТЗХ, выполненной на отдельном диске;

б – с ТЗХ, выполненной в виде второго яруса лопаток.

1 – турбина компрессора; 2 – турбина переднего хода; 3 – турбина заднего хода;

4 – газораспределительный орган; 5 – второй ярус лопаток ТЗХ.

Перемещения газораспределительного органа должны быть взаимосвязаны с подачей топлива на форсунки. При осуществлении реверса ГТД должна соблюдаться следующая последовательность операций:

    Уменьшение подачи топлива на форсунки до расхода холостого хода;

    Одновременная перекладка газораспределительного органа, осуществляющего перепуск газа в ТЗХ, при постепенном уменьшении расхода газа до нуля, подаваемого в проточную часть ТПХ;

    Увеличение подачи топлива на форсунки до величины, соответствующей заданному режиму обратного хода, после полной перекладки газораспределительного органа.

Главным недостатком описанных выше способов реверса является наличие больших вентиляционных потерь из-за холостого вращения неработающих ступеней (на переднем ходу вхолостую вращаются ступени ТЗХ, на заднем ходу – ТПХ). На холостое вращение ступеней турбины в плотной воздушной или газовой среде затрачивается значительная часть энергии двигателя. Эти потери для газотурбинных установок могут достигать 3 ÷ 4 % от мощности ГТД для неработающей ТЗХ, и еще большей величины для неработающей ТПХ. Кроме того, при холостом вращении турбины происходит сильный нагрев ее элементов, что влечет за собой дополнительные затраты на ее охлаждение. В случае использования двухъярусных лопаток дополнительной проблемой является обеспечение прочности высоких лопаток при высоких частотах вращения роторов турбин.

Реверсивные центростремительные турбины

Этот способ реверса характерен тем, что при его использовании отсутствуют вентиляционные потери как на переднем, так и на заднем ходу судна. Это обусловлено тем, что при радиальном расположении лопастей одно и то же рабочее колесо может быть использовано для работы и на переднем, и на заднем ходу. Реверс при этом осуществляется поворотом направляющих лопаток соплового венца (рис. 71).

Рис. 71. Схема реверсивной центростремительной турбины.

1 − сопловый венец с поворотными лопатками; 2 − рабочее колесо с радиальными лопастями;

3 ­− лопатки в положении ПХ;

4 − лопатки в положении ЗХ.

Несмотря на положительные свойства реверсивные центростремительные турбины пока не получили широкого распространения в судовых ГТУ из-за трудности компоновки проточных частей, состоящих из нескольких последовательно расположенных центро-стремительных турбин и сложности сочетания в одном корпусе центро-стремительных и осевых ступеней. Вместе с тем рациональное использование ревер-сивных центростремительных турбин предполагает сочетание осевых турбин в качестве приводных для компрессоров с центростремительными пропульсивными турбинами.

Системы охлаждения конструктивных узлов ГТУ

Охлаждение деталей газовой турбины, подверженных воздействию высоких температур, применяется для достижения того температурного уровня и перепадов температур, которые обеспечивают надежную работу ГТД на всех режимах.

К системам охлаждения конструктивных элементов ГТУ относятся:

    система охлаждения забортной водой оборудования ГТУ;

    система охлаждения пресной водой конструктивных узлов ГТУ;

    система воздушного охлаждения конструктивных узлов ГТУ.

Система охлаждения забортной водой оборудования ГТУ (рис. 72) предназначена для отвода тепла от маслоохладителей, воздухоохладителей и охладителя пресной воды (в случае использования системы охлаждения пресной водой конструктивных узлов ГТУ). Система охлаждения выполняется как с принудительной подачей воды − с помощью насоса центробежного или осевого типа, так и самопроточной. В самопроточных системах насос охлаждающей забортной воды используется только на режимах малого хода, стопа или заднего хода, когда в приемном патрубке не может быть создан напор, достаточный для преодоления гидравлического сопротивления тракта охлаждения.

Рис. 72. Схема систем водяного охлаждения ГТУ.

РЦПВ – расходная цистерна пресной воды; ОН – основной насос контура охлаждения; РН – резервный насос контура охлаждения; Ф – фильтры; 1 – подвод охлаждающей воды к нижней части корпуса; 2 – подвод охлаждающей воды к верхней части корпуса; 3 – отвод горячей воды от нижней части корпуса; 4 – отвод горячей воды от верхней части корпуса; ОПВ – охладитель пресной воды; МО – маслоохладитель;

ВО – воздухоохладитель; ПЗВ – прием забортной воды; ФЗВ – фильтр забортной воды; ЦН – циркуляционный насос забортной воды; СЗВ – слив забортной воды;

М – масло; В – воздух.

Система охлаждения пресной водой (рис. 72) выполняется только для неподвижных частей (корпусов компрессоров, газовых турбин, выхлопных и улиточных патрубков и т.д.) ГТД непрямоточного типа.

Охлаждение ГТД осуществляется циркуляцией пресной воды по специальным каналам для охлаждающей воды или по полостям, образованным двойными стенками корпусов турбин и патрубков. Обычно в систему водяного охлаждения входит следующее оборудование: расходная цистерна пресной воды, основной и резервный циркуляционные насосы, охладитель пресной воды, фильтры и арматура. Охлаждение контура пресной воды осуществляется в охладителе забортной водой.

Системы воздушного охлаждения корпусов турбин (рис. 73) используются в прямоточных двигателях с осевым движением воздуха и газа, корпус которых имеет простую цилиндрическую форму. Охлаждающий воздух поступает в кольцевое пространство между наружным кожухом и корпусами турбин, омывает корпуса и выводится в газоход за счет эжектирующего действия струи газа. В качестве охлаждающей среды могут использоваться: воздух машинного отделения, атмосферный воздух или воздух, отбираемый от одной из ступеней компрессора.

О хлаждение элементов проточ-ной части турбин: сопловых, рабочих лопаток и дисков ротора, осуществляется воздухом, отбирае-мым от одной из ступеней компрессора.

К наиболее распространенным схемам охлаждения элементов проточной части относятся открытая наружная иоткрытая внутренняя системы охлаждения.

Рис. 73. Схема воздушного охлаждения корпуса ГТД.

УПГ – утилизационный парогенератор;

В – трубопровод охлаждающего воздуха;

Г – газоход.

Открытые наружные системы охлаждения (парциальные, экранные и струйные) снижают температуру металла деталей проточной части на 50 ÷ 70 о С . Воздух через отверстия в роторе подводится к зазору между ротором и направляющим аппаратом по каналам, обдувая вершину направляющего аппарата, корень рабочих лопаток, и смешивается с потоком газа в проточной части турбины (рис. 74.а ).

При внутреннем воздушном охлаждении воздух поступает внутрь рабочей лопатки через специальные отверстия в ее корне. В зависимости от конструкции охлаждаемых лопаток, воздух проходит по каналам внутри лопатки (рис. 74.б -в ), либо через щель между дефлектором (внутренней вставкой) и наружной оболочкой лопатки (рис. 74.г ), и затем выбрасывается в проточную часть через отверстия в торцевой части или задней кромке, где смешивается с потоком газа. Применение внутреннего охлаждения лопаток позволяет снизить температуру металла рабочих лопаток на 150 ÷ 300 о С .

Рис. 74. Способы охлаждения турбинных лопаток

а – наружная открытая система; б , в , г – внутренние открытые системы охлаждения.

Охлаждение дисков и роторов газовых турбин производится с помощью циклового воздуха и может происходить несколькими способами:

    радиальным обдувом , когда воздух подводится через отверстия в роторе к корневой части диска и движется к его периферии;

    струйным охлаждением , при котором струйки воздуха обдувают непосредственно обод диска;

    продувкой воздуха через зазоры хвостовиков лопаток;

    заградительным охлаждением , при котором между газами и поверхностью диска создается защитная воздушная пленка;

    комбинированным способом , сочетающим в себе несколько вышеперечисленных.

Система регулирования, управления и защиты (РУЗ ГТД )

В ходе эксплуатации судовой ГТУ возможны частые смены ходов судна и работа установки на переменных режимах. При работе ГТД на всех рабочих режимах необходимо обеспечить:

    возможно более экономичную работу установки;

    температуру газов перед газовой турбиной, не превышающую допустимую по условиям жаропрочности материалов проточной части;

    устойчивый процесс горения топлива без срывов факела;

    безпомпажный режим работы осевого компрессора.

Выполнение всех этих условий при работе ГТД обеспечивается системами регулирования, управления и защиты – РУЗ ГТД, на которые возлагаются следующие функции:

      Осуществление и поддержание всех эксплуатационных, стационарных и переходных режимов ГТУ при минимальном числе воздействий на ручные органы управления.

      Преобразование и передача импульсов от ручных органов управления к техническим средствам, управляющим режимами работы ГТУ и обслуживающим ее.

      Исключение возможности неправильных манипуляций обслуживаю­щего персонала при управлении установкой на всех режимах.

      Вывод установки из действия или ограничение возможности ее эксплуатации без вмешательства обслуживающего персонала на режимах, которые сопровождаются нарушениями нормаль­ных условий работы любого конструктивного узла или составного элемента установки.

      Предоставление обслуживающему персоналу информации, необходи­мой для наблюдения за условиями работы ГТД и элементов установки и сигнализация о нарушениях нормальных условий их работы.

Мощность, получаемая на выходном фланце ГТД, зависит от расхода топлива, подаваемого в камеры сгорания, поэтому система регулирования обычно объединяется с топливной системой самого двигателя. Изменение мощности ГТД можно осуществить воздействием на элемент, управляющий подачей топлива, а характер воздействия зависит от типа топливных форсунок, установленных на двигателе (регулируемые или нерегулируемые), и способа изменения производительности регулируемых форсунок.

В зависимости от того, как осуществляется процесс регулирования, различают два основных способа регулирования мощности ГТД: качественное и количественное .

Качественное регулирование производится изменением температуры газа перед газовой турбиной при малом изменении расхода нагнетаемого воздуха. В этом случае для уменьшения нагрузки уменьшается количество подаваемого в камеры сгорания топлива. При этом увеличивается коэффициент избытка воздуха и снижается температура газов перед газовой турбиной, что приводит к снижению теплоперепада, срабатываемого на турбине и уменьшению мощности установки. Качественное регулирование является наиболее простым, но приводит к значительному снижению КПД при отклонении режима работы двигателя от расчетного.

Количественное регулирование осуществляется изменением частоты вращения компрессора, что в свою очередь вызывает изменение расхода воздуха и степени повышения давления. При таком способе регулирования резко меняются температуры газа перед газовой турбиной, что вызывает максимальные термические напряжения в деталях проточной части.

В реальных ГТУ исключительно редко применяют какой-то отдельный способ регулирования мощности, а обычно используют смешанное регулирование , сочетающее в себе оба описанных способа. Во всех случаях изменение полезной мощности в конечном счете достигается изменением расхода сжигаемого топлива.

При использовании нерегулируемых форсунок изменение расхода топлива в камеры сгорания может производиться с помощью насоса переменной производительности, либо изменением слива части топлива с напора топливного насоса в расходную топливную цистерну. Способы изменения расхода топлива врегулируемых форсунках будут рассмотрены во второй части пособия при рассмотрении систем регулирования паровых котлов.

В ГТУ наиболее частым способом регулирования расхода топлива, поступающего в камеры сгорания, является использование многокаскадных или многоканальных форсунок. Использование многоканальных форсунок позволяет существенно увеличить диапазон изменения подачи топлива при ограниченном изменении давления топлива за топливным насосом. Объектом регулирования в таких системах является дроссельный кран (рис. 75).

Рис. 75. Схема управления подачей топлива при применении многоканальных форсунок.

ТН – топливный насос переменной производительности; Ш – шайба топливного насоса; Т – тяга подачи топливного насоса; РЗ – распределительный золотник (входит в состав АРТ ); П – поршень распределительного золотника; Ф – топливная форсунка; Р – рукоятка управления дроссельным краном – «сектор газа»; ДК – дроссельный кран; – подача топлива в первый канал форсунок; – подача топлива во второй канал форсунок; 1 – всасывающий трубопровод топливного насоса; 2 – напорный трубопровод топливного насоса; 3 – слив топлива в цистерну.

Количество топлива, подаваемого в камеры сгорания двигателя (рис. 75) определяется давлением топлива в полости распределительного золотника. При полностью открытом дроссельном кране, управляемом системой регулирования, давления топлива, подаваемого топливным насосом, недостаточно для того, чтобы передвинуть поршень, нагруженный пружиной. Поршень находится в крайнем левом положении и перекрывает своим телом отверстия, подающие топливо к первому и второму каналам форсунок. При этом все топливо, поступившее в полость золотника, сливается по сливной магистрали в расходную топливную цистерну. По мере прикрывания дросселя давление в полости золотника постепенно увеличивается, и поршень начинает отодвигаться к крайнему правому положению, открывая сначала отверстие подачи топлива в первые каналы форсунок (показано на рисунке), а при дальнейшем закрывании золотника – во вторые каналы форсунок. Управление ГТД в рассматриваемом случае сводится к управлению положением дроссельного крана.

Системы управления ГТД, работающих на ВРШ, более сложны. Одна и та же мощность может быть получена большим количеством различных сочетаний расхода топлива и угла поворота лопастей винта. Из этих сочетаний, как правило, выбирается то, которое обеспечивает максимальную экономичность установки (т.е. каждому углу поворота лопастей винта должен соответствовать определенный расход топлива).

Обычно регулированию подвергаются следующие параметры работы газотурбинного двигателя:

Система защиты ГТД предназначена для ограничения мощности двигателя или обеспечения его экстренной остановки при возникновении аварийных ситуаций.

Защитные устройства по степени влияния на работу двигателя делятся на ограничительные ипредельные .

Ограничительные защитные устройства срабатывают в том случае, когда нарушения нормальных условий работы ГТУ носят кратковременный харак­тер и (или) когда нормальные условия могут быть восстановлены воздействием на специальные устройства, устраняющие причину нарушения работы. К ограничительным защитным устройствам относятся:

    противопомпажная защита , предотвращающая возникновение помпажа компрессора путем воздействия на противопомпажные устройства при при­ближении режимных точек к границам помпажных зон;

    защита против угона роторов турбомашин, предотвращающая по­вышение частоты вращения роторов сверх расчетной путем уменьшения рас­хода топлива, подаваемого в камеры сгорания; Этот вид защиты ограничивает частоту вращения турбомашин в диапазоне 100 ÷ 110 % по сравнению с режимом но­минальной нагрузки. При дальнейшем повышении частоты вращения срабаты­вает защитное устройство предельного действия, полностью прекращающее подачу топлива в камеры сгорания;

Предельные защитные устройства применяются в тех случаях, когда нарушения нормальных условий работы ГТУ носят длительный характер и когда эти нарушения могут привести к авариям установки. В качестве предельной защиты используют:

    защиту по частоте вращения ротора пропульсивной турбины (защиту от угона ротора);

    защиту по частоте вращения роторов компрессоров ;

    защиту по снижению давления масла в системе смазки ГТД.

Все предельные защитные устройства выдают импульс на стоп-кран топливной системы (см. рис. 67), мгновенно отключающий подачу топлива на форсунки двигателя.

Воздухоприемные и газовыхлопные устройства

Воздухоприемные устройства судовых ГТД предназначены для подачи воздуха к двигателям, защиты ГТД от попадания посторонних предметов, выхлопных газов, брызг и солей морской воды, эрозионно опасных частиц и предохранения входных устройств компрессоров от обледенения.

На водоизмещающих судах наиболее распространены надпалубные воздухоприемные устройства шахтного типа, в состав которых могут входить следующие элементы (рис. 76):

    приемный патрубок (П ), предназначенный для забора воздуха из атмосферы и формирования воздушного потока. Приемные патрубки располагают в той части судна, где возможно наименьшее попадание в поток воздуха солей и брызг морской воды, выхлопных газов, пыли и других инородных предметов;

    фильтры (Ф ), обеспечивающие очистку воздуха, поступающего на всасывание компрессора;

    шахта (Ш ). С целью снижения уровня шума шахту с внутренней стороны часто облицовывают звукопоглощающим покрытием (ЗП );

    устройство глушения шума (ГШ ), предназначенное для уменьшения уровня шума воздушного потока; Основным источником шума в ГТД является всасывающая часть компрессора, в которой шум возникает при взаимодействии потока воздуха с неподвижным входным направляющим аппаратом и последующим быстро вращающимся первым рядом рабочих лопаток;

    Рис. 76. Схема шахтного

    воздухоприемного

    устройства ГТД.

    охладители (ВО ) иподогреватели (ВП )воздуха ; Охлаждение всасываемого компрессором воздуха позволяет увеличить мощность ГТУ (особенно при высоких температурах забортного воздуха) Охлаждение можно обеспечить при пропускании воздуха через воздухоохладитель, либо впрыском в него мелко распыленной очищенной воды. При температуре забортного воздуха близкой к 0 о С в условиях высокой влажности возникает необходимость подогрева воздуха, поступающего в компрессор, во избежание обледенения входного устройства ГТД и входного направляющего аппарата. Подогрев воздуха осуществляется перепуском небольшой части циклового воздуха, отбираемого за компрессором, либо перепуском части продуктов сгорания в поток всасываемого воздуха;

    улиточный патрубок , предназначенный для формирования воздушного потока, поступающего в компрессор.

Надпалубные воздухоприемные устройства иногда выполняют для подачи воздуха в машинное отделение, откуда его забирает один или несколько ГТД.

Газовыхлопные устройства судовых ГТД служат для отвода выхлопных газов от двигателя с минимальными потерями энергии и, кроме того позволяют:

    снизить уровень шума со стороны выхлопа:

    эжектировать охлаждающий воздух из-под кожуха двигателя (рис. 73);

    снизить температуру газа за турбиной до требуемого уровня;

    обеспечить подвод газов к теплоутилизационным котлам.

ГВУ состоят из различных (в зависимости от типа и размещения двигателя) сочетаний следующих элементов: затурбинного диффузора; улиточного патрубка; удлинительных труб; поворотного колена; эжекторного усилителя тяги; реактивного сопла; систем охлаждения и шумоглушения.

При размещении ГТД в непосредственной близости от верхней палубы ГВУ выполняются в виде реактивных сопел с выходом в кормовую часть судна (для быстроходных судов). При этом остаточная часть кинетической энергии газов преобразуется в дополнительную реактивную тягу.

При размещении ГТД в МО судна на значительном удалении от верхней палубы ГВУ обязательно содержит выхлопной патрубок, поворачивающий поток газа на 90 о.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама