THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама
Вычисление определителей n -го порядка:

Понятие определителя n -го порядка

Пользуясь этой статьёй об определителях, вы обязательно научитесь решать задачи вроде следующей:

Решить уравнение:

и многих других, которые так любят придумывать преподаватели.

Определитель матрицы или просто определитель играет важную роль в решении систем линейных уравнений. В общем-то определители и были придуманы для этой цели. Поскольку часто говорят также "определитель матрицы", упомянем здесь и матрицы. Матрица - это прямоугольная таблица, составленная из чисел, которые нельзя менять местами. Квадратная матрица - таблица, у которой число строк и число столбцов одинаково. Определитель может быть только у квадратной матрицы .

Понять логику записи определителей легко по следующей схеме. Возьмём знакомую вам со школьной скамьи систему из двух уравнений с двумя неизвестными:

В определителе последовательно записываются коэффициенты при неизвестных: в первой строке - из первого уравнения, во второй строке - из второго уравнения:

Например, если дана система уравнений

то из коэффициентов при неизвестных формируется следующий определитель:

Итак, пусть дана квадратная таблица, состоящая из чисел, расположенных в n строках (горизонтальных рядах) и в n столбцах (вертикальных рядах). С помощью этих чисел по некоторым правилам, которые мы изучим ниже, находят число, которое и называют определителем n -го порядка и обозначают следующим образом:

(1)

Числа называют элементами определителя (1) (первый индекс означает номер строки, второй – номер столбца, на пересечении которых стоит элемент; i = 1, 2, ..., n; j = 1, 2, ..., n). Порядок определителя – это число его строк и столбцов.

Воображаемая прямая, соединяющая элементы определителя, у которых оба индекса одинаковы, т.е. элементы

называется главной диагональю , другая диагональ – побочной .

Вычисление определителей второго и третьего порядков

Покажем, как вычисляются определители первых трёх порядков.

Определитель первого порядка – это сам элемент т.е.

Определитель второго порядка есть число, получаемое следующим образом:

, (2)

Произведение элементов, стоящих соответственно на главной и на побочной диагоналях.

Равенство (2) показывает, что со своим знаком берётся произведение элементов главной диагонали, а с противоположным – произведение элементов побочной диагонали .

Пример 1. Вычислить определители второго порядка:

Решение. По формуле (2) находим:

Определитель третьего порядка – это число, получаемое так:

(3)

Запомнить эту формулу трудно. Однако существует простое правило, называемое правилом треугольников , которое позволяет легко воспроизвести выражение (3). Обозначая элементы определителя точками, соединим отрезками прямой те из них, которые дают произведения элементов определителя (рис. 1).


Формула (3) показывает, что со своими знаками берутся произведения элементов главной диагонали, а также элементов, расположенных в вершинах двух треугольников, основания которых ей параллельны; с противоположными – произведения элементов побочной диагонали, а также элементов, расположенных в вершинах двух треугольников, которые ей параллельны .

На рис.1 главная диагональ и соответствующие ей основания треугольников и побочная диагональ и соответствующие ей основания треугольников выделены красным цветом.

При вычислении определителей очень важно, как и в средней школе, помнить, что число со знаком минус, умноженное на число со знаком минус, в результате даёт число со знаком плюс, а число со знаком плюс, умноженное на число со знаком минус, в результате даёт число со знаком минус.

Пример 2. Вычислить определитель третьего порядка:

Решение. Пользуясь правилом треугольников, получим



Вычисление определителей n -го порядка

Разложение определителя по строке или столбцу

Для вычисления определителя n -го порядка необходимо знать и использовать следующую теорему.

Теорема Лапласа. Определитель равен сумме произведений элементов какой-либо строки на их алгебраические дополнения, т.е.

Определение . Если в определителе n -го порядка выбрать произвольно p строк и p столбцов (p < n ), то элементы, находящиеся на пересечении этих строк и столбцов, образуют матрицу порядка .

Определитель этой матрицы называется минором исходного определителя. Например, рассмотрим определитель :

Из строк и столбцов с чётными номерами построим матрицу:

Определитель

называется минором определителя . Получили минор второго порядка. Ясно, что из можно построить различные миноры первого, второго и третьего порядка.

Если взять элемент и вычеркнуть в определителе строку и столбец, на пересечении которых он стоит, то получим минор, называемый минором элемента , который обозначим через :

.

Если минор умножить на , где 3 + 2 – сумма номеров строки и столбца, на пересечении которых стоит элемент то полученное произведение называется алгебраическим дополнением элемента и обозначается ,

Вообще, минор элемента будем обозначать , а алгебраическое дополнение ,

(4)

Для примера вычислим алгебраические дополнения элементов и определителя третьего порядка :

По формуле (4) получим

При разложении определителя часто используется следующее свойство определителя n -го порядка:

если к элементам какой-либо строки или столбца прибавить произведение соответствующих элементов другой строки или столбца на постоянный множитель, то значение определителя не изменится.

Пример 4.

Предварительно вычтем из первой и третьей строк элементы четвёртой строки, тогда будем иметь

В четвёртом столбце полученного определителя три элемента – нули. Поэтому выгоднее разложить этот определитель по элементам четвёртого столбца, так как три первых произведения будут нулями. Поэтому

Проверить решение можно с помощью калькулятора определителей онлайн .

А в следующем примере показано, как вычисление определителя любого (в данном случае - четвёртого) порядка можно свести к вычислению определителя второго порядка.

Пример 5. Вычислить определитель:

Вычтем из третьей строки элементы первой строки, а к элементам четвёртой строки прибавим элементы первой строки, тогда будем иметь

В первом столбце все элементы, кроме первого, - нули. То есть, определитель можно уже разложить по первому столбцу. Но нам очень не хочется вычислять определитель третьего порядка. Поэтому произведём ещё преобразования: к элементам третьей строки прибавим элементы второй строки, умноженные на 2, а из элементов четвёртой строки вычтем элементы второй строки. В результате определитель, являющийся алгебраическим дополнением, сам может быть разложен по первому столбцу и нам останется только вычислить определитель второго порядка и не запутаться в знаках:

Приведение определителя к треугольному виду

Определитель, где все элементы, лежащие по одну сторону одной из диагоналей, равны нулю, называется треугольным. Случай побочной диагонали путём изменения порядка строк или столбцов на обратный сводится к случаю главной диагонали. Такой определитель равен произведению элементов главной диагонали.

Для приведения к треугольному виду используется то же самое свойство определителя n -го порядка, которое мы применяли в предыдущем параграфе: если к элементам какой-либо строки или столбца прибавить произведение соответствующих элементов другой строки или столбца на постоянный множитель, то значение определителя не изменится.

Проверить решение можно с помощью калькулятора определителей онлайн .

Свойства определителя n -го порядка

В двух предыдущих параграфах мы уже использовали одно из свойств определителя n -го порядка. В некоторых случаях для упрощения вычисления определителя можно пользоваться другими важнейшими свойствами определителя. Например, можно привести определитель к сумме двух определителей, из которых один или оба могут быть удобно разложены по какой-либо строке или столбцу. Случаев такого упрощения предостаточно и решать вопрос об использовании того или иного свойства определителя следует индивидуально.

Определение1. 7 . Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный элемент.

Обозначение: выбранный элемент определителя, его минор.

Пример. Для

Определение1. 8. Алгебраическим дополнением элемента определителя называется его минор, если сумма индексов данного элемента i+j есть число четное, или число, противоположное минору, если i+j нечетно, т.е.

Рассмотрим еще один способ вычисления определителей третьего порядка – так называемое разложение по строке или столбцу. Для этого докажем следующую теорему:

Теорема 1.1 . Определитель равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, т.е.

где i=1,2,3.

Доказательство.

Докажем теорему для первой строки определителя, так как для любой другой строки или столбца можно провести аналогичные рассуждения и получить тот же результат.

Найдем алгебраические дополнения к элементам первой строки:

Таким образом, для вычисления определителя достаточно найти алгебраические дополнения к элементам какой-либо строки или столбца и вычислить сумму их произведений на соответствующие элементы определителя.

Пример. Вычислим определитель с помощью разложения по первому столбцу. Заметим, что при этом искать не требуется, так как следовательно, и Найдем и Следовательно,

Определители более высоких порядков .

Определение1. 9 . Определитель n-го порядка

есть сумма n! членов каждый из которых соответствует одному из n! упорядоченных множеств полученных r попарными перестановками элементов из множества 1,2,…,n.

Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n-го порядка.

Замечание 2. На практике определители высоких порядков вычисляют с помощью разложения по строке или столбцу. Это позволяет понизить порядок вычисляемых определителей и в конечном счете свести задачу к нахождению определителей 3-го порядка.

Пример. Вычислим определитель 4-го порядка с помощью разложения по 2-му столбцу. Для этого найдем и :

Следовательно,

Теоре́ма Лапла́са - одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 - 1827), которому приписывают формулирование этой теоремы в 1772 году , хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.

олнение минора определяется следующим образом:

Справедливо следующее утверждение.

Число миноров, по которым берётся сумма в теореме Лапласа, равно числу способов выбрать столбцов из , то есть биномиальному коэффициенту .

Так как строки и столбцы матрицы равносильны относительно свойств определителя, теорему Лапласа можно сформулировать и для столбцов матрицы.

Разложение определителя по строке (столбцу) (Следствие 1)

Широко известен частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам.

Задание. Вычислить определитель , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй - пять третьих и от четвертой - три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей - вторую:

Ответ.

12. Слау 3 порядка

1. Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "плюс"; аналогично, для второго определителя - соответствующие произведения берутся со знаком "минус", т.е.

2. Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":

3. Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Задание. Разложив по первой строке, вычислить определитель

Решение.

Ответ.

4.Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

Далее делаем нули во втором столбце под главной диагональю, для этого поступаем следующим образом: к третьей строке прибавляем три вторых, а к четвертой - две вторых строки, получаем:

Далее из третьей строки выносим (-10) за определитель и делаем нули в третьем столбце под главной диагональю, а для этого к последней строке прибавляем третью:


1.Теорема разложения:

Всякий определитель равен сумме парных произведений элементов какого-либо ряда на их алгебраические дополнения.

Для i- й строки:

или для j -го столбца:

Пример 7.1. Вычислить определитель разложением по элементам первой строки:

1∙(1+12+12 ) ∙(2+16+18 )+

3∙(4+8+27 ) ∙(8+4+18 )=

Теорема разложения позволяет заменить вычисление одного определителя n- го порядка вычислением n определителей (n- 1)-го порядка.

Однако для упрощения вычислений целесообразно для определителей высоких порядков использовать метод «размножения нулей», основанный на свойстве 6 раздела 5. Его идея:

Сначала «размножить нули» в некотором ряду, т.е. получить ряд, в котором только один элемент не равен нулю, остальные нули;

Затем разложить определитель по элементам этого ряда.

Следовательно, на основании теоремы разложения исходный определитель равен произведению ненулевого элемента на его алгебраическое дополнение.

Пример7.2. Вычислить определитель:

.

«Размножим нули» в первом столбце.

От второй строки вычтем первую, умноженную на 2, от третьей строки вычтем первую, умноженную на 3, а от четвертой строки вычтем первую, умноженную на 4. При таких преобразованиях величина определителя не изменится.

По свойству 4 раздела 5 можем вынести за знак определителя из 1-го столбца, из 2-го столбца и из 3-го столбца.

Следствие: Определитель с нулевым рядом равен нулю.

2. Теорема замещения:

Сумма парных произведений каких-либо чисел на алгебраические дополнения некоторого ряда определителя равна тому определителю, который получается из данного, если в нем заменить элементы этого ряда взятыми числами.

Для -й строки:

1. Теорема аннулирования:

Сумма парных произведений элементов какого-либо ряда на алгебраические дополнения параллельного ряда равна нулю.

Действительно, по теореме замещения получаем определитель, у которого в k -й строке стоят те же элементы, что и в i -й строке

Но по свойству 3 раздела 5 такой определитель равен нулю.

Т.о., теорему разложения и ее следствия можно записать следующим образом:

8. Общие сведения о матрицах. Основные определения.

Определение 8.1 . Матрицей называется следующая прямоугольная таблица:

Применяют также следующие обозначения матрицы: , или , или .

Строки и столбцы матрицы именуются рядами.

Величина называется размером матрицы.

Если в матрице поменять местами строки и столбцы, то получим матрицу, называемую транспонированной . Матрица, транспонированнаяс , обычно обозначается символом .

Например:

Определение 8.2 . Две матрицы A и B называются равными , если

1) обе матрицы одинаковых размеров, т.е. и ;

2) все их соответствующие элементы равны, т.е.

Тогда . (8.2)

Здесь одно матричное равенство (8.2) эквивалентно скалярных равенств (8.1).

9. Разновидности матриц.

1) Матрица, все элементы которой равны нулю, называется ноль-матрицей:

2) Если матрица состоит только из одной строки, то она называется матрицей-строкой, например . Аналогично этому матрица, имеющая только один столбец, именуется матрицей-столб­цом, например .

Транспонирование переводит матрицу-столбец в матрицу-строку и наоборот.

3) Если m = n , то матрица называется квадрат­ной матрицей n-го порядка.

Диагональ членов квадратной матрицы, идущая из левого верхнего угла в ее правый нижний угол, называется главной . Другая же диагональ ее членов, идущая из левого нижнего угла в ее правый верхний угол, именуется побочной .

Для квадратной матрицы может быть вычислен определитель det(A) .

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама