THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Ею является поиск путей объединения двух фундаментальных теорий – ОТО (о гравитационном ) и СМ (стандартной модели, объединяющей три фундаментальных физических взаимодействия – электромагнитного, сильного и слабого). Нахождению решения до создания БАКа препятствовали трудности при создании теории квантовой гравитации.

Построение этой гипотезы включает в себя соединение двух физических теорий – квантовой механики и общей теории относительности.

Для этого были использованы сразу несколько популярных и нужных в современной подходов – струнная теория, теория бран, теория супергравитации, а также теория квантовой гравитации. До построения колайдера главной проблемой проведения необходимых экспериментов являлось отсутствие энергии, которую нельзя достичь на других современных ускорителях заряженных частиц.

Женевский БАК дал ученым возможность проведения ранее неосуществимых экспериментов. Считается, что уже в скором будущем при помощи аппарата будут подтверждены или опровергнуты многие физические теории. Одной из самых проблемных является суперсимметрия или теория струн, которая долгое время разделяла физическое на два лагеря – «струнщиков» и их соперников.

Другие фундаментальные эксперименты, проводимые в рамках работы БАК

Интересны и изыскания ученых в области изучения топ- , являющихся самыми кварками и наиболее тяжелыми (173,1 ± 1,3 ГэВ/c²) из всех известных в настоящее время элементарных частиц.

Из-за этого свойства и до создания БАКа, ученые могли наблюдать кварки только на ускорителе «Тэватрон», так как прочие устройства просто не обладали достаточной мощностью и энергией. В свою очередь, теория кварков представляет собой важный элемент нашумевшей гипотезы о бозоне Хиггса.

Все научные изыскания по созданию и изучению свойств кварков ученые производят в топ-кварк-антикварковой паровой в БАКе.

Важной целью женевского проекта также является процесс изучения механизма электрослабой симметрии, которая также связана с экспериментальным доказательством существования бозона Хиггса. Если обозначить проблематику еще точнее, то предметом изучения является не столько сам бозон, сколько предсказанный Питером Хиггсом механизм нарушения симметрии электрослабого взаимодействия.

В рамках БАКа также проводятся эксперименты по поиску суперсимметрии – причем желаемым результатом станет и доказательство теории о том, что любая элементарная частица всегда сопровождается более тяжелым партнером, и ее опровержение.

Принцип работы Большого адронного коллайдера

Ускоритель БАК будет работать на основе эффекта сверхпроводимости, т.е. способности определенных материалов проводить электричество без сопротивления или потери энергии, обычно при очень низких температурах. Чтобы удержать пучок частиц на его кольцевом треке, необходимы более сильные магнитные поля, чем те, которые использовались ранее в других ускорителях ЦЕРН.

Большой адронный коллайдер - ускоритель протонов, построенный на территории Швейцарии и Франции, не имеет аналогов в мире. Эта кольцевая конструкция протяженностью 27 км сооружена на 100-метровой глубине.

В ней с помощью 120 мощных электромагнитов при температуре, близкой к абсолютному нулю - минус 271,3 градуса по Цельсию, предполагается разогнать до близкой к световой скорости (99,9 процентов) встречные пучки протонов. Однако в ряде мест их маршруты пересекутся, что позволит протонам сталкиваться. Направлять частицы будут несколько тысяч сверхпроводящих магнитов. Когда энергии будет достаточно, частицы столкнутся, тем самым учёные создадут модель Большого взрыва. Тысячи датчиков будут фиксировать моменты столкновения. Последствия столкновения протонов и станет главным предметом изучения мира. [ http://dipland.ru /Кибернетика/Большой_андронный_коллайдер_92988]

Технические характеристики

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тера электронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109электронвольт) на каждую пару сталкивающихся нуклонов . На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена - протон-антипротонный коллайдер Тэватрон , который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США ). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC , работающий в Брукхейвенской лаборатории (США).

Детекторы

На БАК работают 4 основных и 3 вспомогательных детектора:

· ALICE (A Large Ion Collider Experiment)

ATLAS (A Toroidal LHC ApparatuS)

CMS (Compact Muon Solenoid)

LHCb (The Large Hadron Collider beauty experiment)

TOTEM (TOTal Elastic and diffractive cross section Measurement)

LHCf (The Large Hadron Collider forward)

MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb - большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf - вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детектор CMS

Детекторы ATLAS и CMS - детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи , ALICE - для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb - для исследования физики b -кварков , что позволит лучше понять различия между материей и антиматерией , TOTEM - предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf - для исследования космических лучей , моделируемых с помощью тех же несталкивающихся частиц .

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL , предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 М Вт . Предположительные энергозатраты всего ЦЕРН на 2009 год с учётом работающего коллайдера - 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя. Эти энергозатраты - около 10 % от суммарного годового энергопотребления кантона Женева . Сам ЦЕРН не производит энергию, имея лишь резервные дизельные генераторы .[ http://ru.wikipedia.org/wiki/ ]

Возможно, через какие-то несколько лет интернет уступит место новой, более глубокой интеграции удаленных компьютеров, позволяющей не только удаленно передавать информацию, локализованную в разных концах света, но и автоматически использовать удаленные вычислительные ресурсы. В связи с запуском Большого адронного коллайдера CERN уже несколько лет работает над созданием такой сети.

То, что интернет (или то, что обозначается термином web) был изобретен в Европейской организации ядерных исследований (CERN), давно уже стало хрестоматийным фактом. Вокруг таблички «В этих коридорах была создана всемирная сеть» в одном из обычных коридоров обычного здания CERN во время дня открытых дверей всегда толпятся зеваки. Сейчас интернет используют для своих практических нужд люди по всему миру, а изначально он был создан для того, чтобы ученые, работающие на одном проекте, но находящиеся в разных концах планеты, могли общаться между собой, делиться данными, публиковать информацию, к которой можно было бы получить доступ удаленно.

Разрабатываемая в CERN система GRID (по-английски grid - решётка, сеть ) - это еще один шаг вперед, новая ступень интеграции пользователей компьютеров.

Он дает не только возможность публиковать данные, которые находятся где-то в другой точке планеты, но и использовать удаленные машинные ресурсы, не сходя со своего места.

Конечно, обычные компьютеры не играют особой роли в обеспечении вычислительных мощностей, поэтому первый этап интеграции - это соединение мировых суперкомпьютерных центров.

Создание этой системы спровоцировал Большой адронный коллайдер. Хотя уже сейчас GRID используется для массы других задач, без коллайдера его бы не было, и наоборот, без GRID обработка результатов коллайдера невозможна.

Карта серверов GRID //

Люди, которые работают в коллаборациях БАК, находятся в разных концах планеты. Известно, что над этим прибором работают не только европейцы, а и все 20 стран - официальных участниц CERN, всего же порядка 35 стран. Теоретически для обеспечения работы БАК существовала альтернатива GRID - расширение собственных вычислительных ресурсов компьютерного центра CERN. Но тех ресурсов, что были на момент постановки задачи, было совершенно недостаточно для моделирования работы ускорителя, хранения информации его экспериментов и ее научной обработки. Поэтому компьютерный центр нужно было бы очень значительно перестраивать и модернизировать, закупать больше компьютеров и средств для хранения данных. Но это бы означало, что все финансирование будет сосредоточено в CERN. Это было не очень приемлемо для стран, находящихся далеко от CERN. Конечно, они не были заинтересованы в спонсировании ресурсов, которыми очень сложно будет воспользоваться и скорее склонны были наращивать свой вычислительный, машинный потенциал. Поэтому родилась идея использовать ресурсы там, где они находятся.

Не пытаться все сосредоточить в одном месте, а объединить то, что уже есть в разных уголках планеты.

С момента раскрытия информации о целях строительства, устройстве и схеме действия адронного коллайдера появлялась масса догадок о последствиях, к которым могут привести подобные исследования. Запуск коллайдера был точкой во времени, которая могла бы разделить историю на «до» и «после». Предугадать, как повела бы себя материя в неестественных для земных условий обстоятельствах, не могли даже светлейшие умы. Массу невероятных теорий и догадок породил большой адронный коллайдер, последние новости о котором можно найти в этом разделе.

Портал в другие миры

Один из успешных запусков коллайдера дал неожиданный результат, открыв портал в другой мир. В процессе столкновения частиц в небе над местом проведения эксперимента образовались облака необычного пунцового цвета, начался вихрь, напоминающий портал. Адронный коллайдер проектировался для контролируемого образования уменьшенных версий черных дыр путем столкновения протонов и ионов. Добились ли ученые своей цели или «портал» был всего лишь совпадением, доподлинно неизвестно.

Известно, что в ближайшем будущем появится адронный коллайдер в России , мощность которого в 100 раз будет превышать возможности первого проекта. Предварительные фото коллайдера, возводимого в РФ, потрясают своим масштабом. Сложно предугадать, к каким последствиям приведут опыты на новом БАК. Всем, кто интересуется исследованиями в области физики, рекомендуем посмотреть видео коллайдера в действии.

Большой адронный коллайдер (БАК) - это ускоритель заряженных частиц, с помощью которого физики смогут узнать о свойсвтах материи значительно больше, чем было известно раньше. Ускорители используются для получения заряженных элементарных частиц высоких энергий. В основе работы практически любого ускорителя лежит взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле напрямую совершает работу над частицей, то есть увеличивает её энергию, а магнитное поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Коллайдер (англ. collide - "сталкиваться") - ускоритель на встречных пучках, предназначенный для изучения продуктов их соударений. Позволяет придать элементарным частицам вещества высокую кинетическую энергию, направить их навстречу друг другу, чтобы произвести их столкновение.

Почему "большой адронный"

Большим коллайдер назван, собственно, из-за своих размеров. Длина основного кольца ускорителя составляет 26 659 м; адронным - из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков.

Построен БАК в научно-исследовательском центре Европейского совета ядерных исследований (ЦЕРН), на границе Швейцарии и Франции, недалеко от Женевы. На сегодняшний день БАК является самой крупной экспериментальной установкой в мире. Руководителем этого масштабного проекта является британский физик Лин Эванс, а в строительстве и исследованиях принимали и принимают участие более 10 тыс. учёных и инженеров из более чем 100 стран.

Небольшой экскурс в историю

В конце 60-х годов прошлого века физиками была разработана так называемая Стандартная модель. Она объединяет три из четырёх фундаментальных взаимодействий - сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах общей теориии относительности. То есть, на сегодняшний день фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и стандартной моделью.

Считается, что стандартная модель должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ(тераэлектронвольт). Главная задача Большого адронного коллайдера - получить хотя бы первые намеки на то, что это за более глубокая теория.

В число основных задач коллайдера входит также открытие и подтверждение Бозона Хиггса. Это открытие подтвердило бы Стандартную Модель возникновения элементарных атомных частиц и стандартной материи. Во время запуска коллайдера на полную мощность целостность Стандартной Модели будет разрушена. Элементарные частицы, свойства которых мы понимаем лишь частично, не будут в состоянии поддерживать свою структурную целостность. У Стандартной Модели есть верхняя граница энергии 1 ТэВ, при увеличении которой частица распадается. При энергии в 7 ТэВ могли бы быть созданы частицы с массами, в десять раз больше чем ныне известные.

Технические характеристики

Предполагается сталкивать в ускорителе протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов.

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см²·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см²·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle(KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер, под землёй на территории Франции и Швейцарии. Глубина залегания туннеля - от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (−271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Детекторы БАК

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

Первый из них настроен для исследования столкновений тяжёлых ионов. Температура и плотность энергии образованной при этом ядерной материи достаточной для рождения глюонной плазмы. Внутренняя система слежения (ITS) в ALICE состоит из шести цилиндрических слоев кремниевых датчиков, окружающих пункт столкновения и измеряющих свойства и точные положения появляющихся частиц. Таким образом могут быть легко обнаружены частицы, содержащие тяжелый кварк.

Второй предназначен для исследования столкновений между протонами. Длина ATLAS – 44 метра, 25 метров в диаметре и вес приблизительно 7000 тонн. В центре тоннеля сталкиваются лучи протонов, это самый большой и самый сложный из когда либо построенных датчиков такого типа. Датчик фиксирует все, что происходит во время и после столкновения протонов. Целью проекта является обнаружение частиц, до этого не зарегистрированных и не обнаруженных в нашей вселенной.

CMS - один из двух огромных универсальных детекторов элементарных частиц на БАК. Около 3600 ученых из 183 лабораторий и университетов 38 стран, поддерживают работу CMS (На рисунке - устройство CMS).


Самый внутренний слой - основанный на кремнии трекер. Трекер - самый большой в мире кремниевый датчик. У этого есть 205 m2 кремниевых датчиков (приблизительно область теннисного корта), включающих 76 миллионов каналов. Трекер позволяет измерять следы заряженных частиц в электромагнитном поле.

На втором уровне находиться Электромагнитный калориметр. Адронный Калориметр, находящийся на следующем уровне, измеряет энергию отдельных адронов, произведенных в каждом случае.

Следующий слой CMS Большого Адронного Коллайдера – огромный магнит. Большой Соленоидный Магнит составляет 13 метров в длину и имеет 6-метровый диаметр. Состоит он из охлаждаемых катушек, сделанных из ниобия и титана. Этот огромный соленоидный магнит работает на полную силу, чтоб максимизировать время существования частиц соленоидный магнит.

Пятый слой - мюонные детекторы и ярмо возврата. CMS предназначен для исследования различных типов физики, которые могли бы быть обнаружены в энергичных столкновениях LHC. Некоторые из этих исследований заключаются в подтверждении или улучшенных измерениях параметров Стандартной Модели, в то время как многие другие - в поисках новой физики.

О Большом адронном коллайдере можно рассказывать много и долго. Надеемся, что наша статья помогла разобраться в том, что же такое БАК и для чего он необходим учёным.

Специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком.

Большой адронный коллайдер (Large Hadron Collider, LHC) — ускоритель, предназначенный для разгона элементарных частиц (в частности, протонов).

На Большом адронном коллайдере открыта новая частица, заявили физики Специалисты Европейского центра ядерных исследований, работающие на Большом адронном коллайдере, объявили об открытии пентакварка - частицы, предсказанной российскими учеными.

Находится на территории Франции и Швейцарии и принадлежит Европейскому совету по ядерным исследованиям (Conseil Europeen pour la Recherche Nucleaire, CERN, ЦЕРН).

На тот момент ученым не было в точности ясно, насколько открытая ими частица соответствует предсказаниям Стандартной модели. К марту 2013 года физики получили достаточно данных о частице, чтобы официально объявить, что это бозон Хиггса.

8 октября 2013 года британскому физику Питеру Хиггсу и бельгийцу Франсуа Энглеру, открывшему механизм нарушения электрослабой симметрии (благодаря этому нарушению элементарные частицы могут иметь массу), была присуждена Нобелевская премия по физике за "теоретическое открытие механизма, который обеспечил понимание происхождения масс элементарных частиц".

В декабре 2013 года, благодаря анализу данных с помощью нейронных сетей, физики ЦЕРНа впервые следы распада бозона Хиггса на фермионы — тау-лептоны и пары b-кварк и b-антикварк.

В июне 2014 года ученые, работающие на детекторе ATLAS, после обработки всей накопленной статистики, уточнили результаты измерения массы хиггсовского бозона. По их данным масса бозона Хиггса равна 125,36 ± 0,41 гигаэлектронвольт. Это практически совпадает — как по значению, так и по точности — с результатом ученых, работающих на детекторе CMS.

В февральской 2015 года публикации в журнале Physical Review Letters физики заявили, что возможной причиной практически полного отсутствия антиматерии во Вселенной и преобладания обычной видимой материи могли послужить движения поля Хиггса - особой структуры, где "живут" бозоны Хиггса. Российско-американский физик Александр Кусенко из университета Калифорнии в Лос-Анджелесе (США) и его коллеги полагают, что им удалось найти ответ на эту вселенскую загадку в тех данных, которые были Большим адронным коллайдером во время первого этапа его работы, когда был обнаружен бозон Хиггса, знаменитая "частица бога".

14 июля 2015 года стало известно, что специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком. Изучение свойств пентакварков позволит лучше понять, как устроена обычная материя. Возможность существования пентакварков сотрудники Петербургского института ядерной физики имени Константинова Дмитрий Дьяконов, Максим Поляков и Виктор Петров.

Данные, собранные БАК на первом этапе работы, позволили физикам из коллаборации LHCb, занимающейся поиском экзотических частиц на одноименном детекторе, "поймать" сразу несколько частиц из пяти кварков, получивших временные имена Pc(4450)+ и Pc(4380)+. Они обладают очень большой массой - около 4,4-4,5 тысячи мегаэлектронвольт, что примерно в четыре-пять раз больше, чем аналогичный показатель для протонов и нейтронов, а также достаточно необычным спином. По своей природе они представляют собой четыре "нормальных" кварка, склеенных с одним антикварком.

Статистическая достоверность открытия девять сигма, что эквивалентно одной случайной ошибке или сбою в работе детектора в одном случае на четыре миллиона миллиардов (10 в 18 степени) попыток.

Одной из целей второго запуска БАК станет поиск темной материи. Предполагается, что обнаружение такой материи поможет решить проблемы скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Материал подготовлен на основе информации РИА Новости и открытых источников

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама